Yilin0601's picture
Update app.py
1ac59b7 verified
import gradio as gr
import torch
import numpy as np
import librosa
import soundfile as sf
import tempfile
import os
from transformers import pipeline, VitsModel, AutoTokenizer
from datasets import load_dataset
# For Coqui TTS (XTTS-v2) used for Chinese and Japanese
try:
from TTS.api import TTS as CoquiTTS
except ImportError:
raise ImportError("Please install Coqui TTS via pip install TTS.")
# ------------------------------------------------------
# 1. ASR Pipeline (English) using Wav2Vec2
# ------------------------------------------------------
asr = pipeline(
"automatic-speech-recognition",
model="facebook/wav2vec2-base-960h"
)
# ------------------------------------------------------
# 2. Translation Models (9 languages)
# ------------------------------------------------------
translation_models = {
"French": "Helsinki-NLP/opus-mt-en-fr",
"Spanish": "Helsinki-NLP/opus-mt-en-es",
"Vietnamese": "Helsinki-NLP/opus-mt-en-vi",
"Indonesian": "Helsinki-NLP/opus-mt-en-id",
"Turkish": "Helsinki-NLP/opus-mt-en-trk",
"Portuguese": "Helsinki-NLP/opus-mt-tc-big-en-pt",
"Korean": "Helsinki-NLP/opus-mt-tc-big-en-ko",
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
"Japanese": "Helsinki-NLP/opus-mt-en-jap"
}
translation_tasks = {
"French": "translation_en_to_fr",
"Spanish": "translation_en_to_es",
"Vietnamese": "translation_en_to_vi",
"Indonesian": "translation_en_to_id",
"Turkish": "translation_en_to_tr",
"Portuguese": "translation_en_to_pt",
"Korean": "translation_en_to-ko",
"Chinese": "translation_en_to_zh",
"Japanese": "translation_en_to_ja"
}
# ------------------------------------------------------
# 3. TTS Configuration
# - MMS TTS (VITS) for: French, Spanish, Vietnamese, Indonesian, Turkish, Portuguese, Korean
# - Coqui XTTS-v2 for: Chinese and Japanese
# ------------------------------------------------------
tts_config = {
"French": {"model_id": "facebook/mms-tts-fra", "architecture": "vits", "type": "mms"},
"Spanish": {"model_id": "facebook/mms-tts-spa", "architecture": "vits", "type": "mms"},
"Vietnamese": {"model_id": "facebook/mms-tts-vie", "architecture": "vits", "type": "mms"},
"Indonesian": {"model_id": "facebook/mms-tts-ind", "architecture": "vits", "type": "mms"},
"Turkish": {"model_id": "facebook/mms-tts-tur", "architecture": "vits", "type": "mms"},
"Portuguese": {"model_id": "facebook/mms-tts-por", "architecture": "vits", "type": "mms"},
"Korean": {"model_id": "facebook/mms-tts-kor", "architecture": "vits", "type": "mms"},
"Chinese": {"type": "coqui"},
"Japanese": {"type": "coqui"}
}
# For Coqui, map languages to expected language codes.
coqui_lang_map = {
"Chinese": "zh",
"Japanese": "ja"
}
# ------------------------------------------------------
# 4. Global Caches for Translators and TTS Models
# ------------------------------------------------------
translator_cache = {}
mms_tts_cache = {}
coqui_tts_cache = None
# ------------------------------------------------------
# 5. Translator Helper
# ------------------------------------------------------
def get_translator(lang):
if lang in translator_cache:
return translator_cache[lang]
model_name = translation_models[lang]
task_name = translation_tasks[lang]
translator = pipeline(task_name, model=model_name)
translator_cache[lang] = translator
return translator
# ------------------------------------------------------
# 6. MMS TTS (VITS) Helper for languages using MMS TTS
# ------------------------------------------------------
def load_mms_tts(lang):
if lang in mms_tts_cache:
return mms_tts_cache[lang]
config = tts_config[lang]
try:
model = VitsModel.from_pretrained(config["model_id"])
tokenizer = AutoTokenizer.from_pretrained(config["model_id"])
mms_tts_cache[lang] = (model, tokenizer)
except Exception as e:
raise RuntimeError(f"Failed to load MMS TTS model for {lang} ({config['model_id']}): {e}")
return mms_tts_cache[lang]
def run_mms_tts(text, lang):
model, tokenizer = load_mms_tts(lang)
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
output = model(**inputs)
if not hasattr(output, "waveform"):
raise RuntimeError(f"MMS TTS model output for {lang} does not contain 'waveform'.")
waveform = output.waveform.squeeze().cpu().numpy()
sample_rate = 16000
return sample_rate, waveform
# ------------------------------------------------------
# 7. Coqui TTS Helper for Chinese and Japanese
# ------------------------------------------------------
def load_coqui_tts():
global coqui_tts_cache
if coqui_tts_cache is not None:
return coqui_tts_cache
try:
coqui_tts_cache = CoquiTTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=False)
except Exception as e:
raise RuntimeError(f"Failed to load Coqui XTTS-v2 TTS: {e}")
return coqui_tts_cache
def run_coqui_tts(text, lang):
coqui_tts = load_coqui_tts()
lang_code = coqui_lang_map[lang]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
tmp_name = tmp.name
try:
coqui_tts.tts_to_file(
text=text,
file_path=tmp_name,
language=lang_code
)
data, sr = sf.read(tmp_name)
finally:
if os.path.exists(tmp_name):
os.remove(tmp_name)
return sr, data
# ------------------------------------------------------
# 8. Main Prediction Function
# ------------------------------------------------------
def predict(audio, text, target_language):
"""
1. Obtain English text (via ASR if audio provided, else text).
2. Translate English text to target_language.
3. Generate TTS audio using either MMS TTS (VITS) or Coqui XTTS-v2.
"""
# Step 1: Get English text.
if text.strip():
english_text = text.strip()
elif audio is not None:
sample_rate, audio_data = audio
if audio_data.dtype not in [np.float32, np.float64]:
audio_data = audio_data.astype(np.float32)
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
audio_data = np.mean(audio_data, axis=1)
if sample_rate != 16000:
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
asr_input = {"array": audio_data, "sampling_rate": 16000}
asr_result = asr(asr_input)
english_text = asr_result["text"].lower()
else:
return "No input provided.", "", None
# Step 2: Translate.
translator = get_translator(target_language)
try:
translation_result = translator(english_text)
translated_text = translation_result[0]["translation_text"]
except Exception as e:
return english_text, f"Translation error: {e}", None
# Step 3: TTS.
try:
tts_type = tts_config[target_language]["type"]
if tts_type == "mms":
sr, waveform = run_mms_tts(translated_text, target_language)
elif tts_type == "coqui":
sr, waveform = run_coqui_tts(translated_text, target_language)
else:
raise RuntimeError("Unknown TTS type for target language.")
except Exception as e:
return english_text, translated_text, f"TTS error: {e}"
return english_text, translated_text, (sr, waveform)
# ------------------------------------------------------
# 9. Gradio Interface
# ------------------------------------------------------
language_choices = [
"French", "Spanish", "Vietnamese", "Indonesian", "Turkish", "Portuguese", "Korean", "Chinese", "Japanese"
]
iface = gr.Interface(
fn=predict,
inputs=[
gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
gr.Dropdown(choices=language_choices, value="French", label="Target Language")
],
outputs=[
gr.Textbox(label="English Transcription"),
gr.Textbox(label="Translation (Target Language)"),
gr.Audio(label="Synthesized Speech")
],
title="Multimodal Language Learning Aid",
description=(
"This app performs the following tasks:\n"
"1. Transcribes English speech using Wav2Vec2 (accepts text input as well).\n"
"2. Translates the English text to the target language using Helsinki-NLP models.\n"
"3. Provides speech:\n"
" - For French, Spanish, Vietnamese, Indonesian, Turkish, Portuguese, and Korean: uses Facebook MMS TTS (VITS-based).\n"
" - For Chinese and Japanese: uses myshell-ai MeloTTS models (work-in-progress).\n"
"\nSelect your target language from the dropdown."
),
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)