|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
import librosa |
|
import soundfile as sf |
|
import tempfile |
|
import os |
|
|
|
from transformers import pipeline, VitsModel, AutoTokenizer |
|
from datasets import load_dataset |
|
|
|
|
|
try: |
|
from TTS.api import TTS as CoquiTTS |
|
except ImportError: |
|
raise ImportError("Please install Coqui TTS via pip install TTS.") |
|
|
|
|
|
|
|
|
|
asr = pipeline( |
|
"automatic-speech-recognition", |
|
model="facebook/wav2vec2-base-960h" |
|
) |
|
|
|
|
|
|
|
|
|
translation_models = { |
|
"French": "Helsinki-NLP/opus-mt-en-fr", |
|
"Spanish": "Helsinki-NLP/opus-mt-en-es", |
|
"Vietnamese": "Helsinki-NLP/opus-mt-en-vi", |
|
"Indonesian": "Helsinki-NLP/opus-mt-en-id", |
|
"Turkish": "Helsinki-NLP/opus-mt-en-trk", |
|
"Portuguese": "Helsinki-NLP/opus-mt-tc-big-en-pt", |
|
"Korean": "Helsinki-NLP/opus-mt-tc-big-en-ko", |
|
"Chinese": "Helsinki-NLP/opus-mt-en-zh", |
|
"Japanese": "Helsinki-NLP/opus-mt-en-jap" |
|
} |
|
|
|
translation_tasks = { |
|
"French": "translation_en_to_fr", |
|
"Spanish": "translation_en_to_es", |
|
"Vietnamese": "translation_en_to_vi", |
|
"Indonesian": "translation_en_to_id", |
|
"Turkish": "translation_en_to_tr", |
|
"Portuguese": "translation_en_to_pt", |
|
"Korean": "translation_en_to-ko", |
|
"Chinese": "translation_en_to_zh", |
|
"Japanese": "translation_en_to_ja" |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
tts_config = { |
|
"French": {"model_id": "facebook/mms-tts-fra", "architecture": "vits", "type": "mms"}, |
|
"Spanish": {"model_id": "facebook/mms-tts-spa", "architecture": "vits", "type": "mms"}, |
|
"Vietnamese": {"model_id": "facebook/mms-tts-vie", "architecture": "vits", "type": "mms"}, |
|
"Indonesian": {"model_id": "facebook/mms-tts-ind", "architecture": "vits", "type": "mms"}, |
|
"Turkish": {"model_id": "facebook/mms-tts-tur", "architecture": "vits", "type": "mms"}, |
|
"Portuguese": {"model_id": "facebook/mms-tts-por", "architecture": "vits", "type": "mms"}, |
|
"Korean": {"model_id": "facebook/mms-tts-kor", "architecture": "vits", "type": "mms"}, |
|
"Chinese": {"type": "coqui"}, |
|
"Japanese": {"type": "coqui"} |
|
} |
|
|
|
|
|
coqui_lang_map = { |
|
"Chinese": "zh", |
|
"Japanese": "ja" |
|
} |
|
|
|
|
|
|
|
|
|
translator_cache = {} |
|
mms_tts_cache = {} |
|
coqui_tts_cache = None |
|
|
|
|
|
|
|
|
|
def get_translator(lang): |
|
if lang in translator_cache: |
|
return translator_cache[lang] |
|
model_name = translation_models[lang] |
|
task_name = translation_tasks[lang] |
|
translator = pipeline(task_name, model=model_name) |
|
translator_cache[lang] = translator |
|
return translator |
|
|
|
|
|
|
|
|
|
def load_mms_tts(lang): |
|
if lang in mms_tts_cache: |
|
return mms_tts_cache[lang] |
|
config = tts_config[lang] |
|
try: |
|
model = VitsModel.from_pretrained(config["model_id"]) |
|
tokenizer = AutoTokenizer.from_pretrained(config["model_id"]) |
|
mms_tts_cache[lang] = (model, tokenizer) |
|
except Exception as e: |
|
raise RuntimeError(f"Failed to load MMS TTS model for {lang} ({config['model_id']}): {e}") |
|
return mms_tts_cache[lang] |
|
|
|
def run_mms_tts(text, lang): |
|
model, tokenizer = load_mms_tts(lang) |
|
inputs = tokenizer(text, return_tensors="pt") |
|
with torch.no_grad(): |
|
output = model(**inputs) |
|
if not hasattr(output, "waveform"): |
|
raise RuntimeError(f"MMS TTS model output for {lang} does not contain 'waveform'.") |
|
waveform = output.waveform.squeeze().cpu().numpy() |
|
sample_rate = 16000 |
|
return sample_rate, waveform |
|
|
|
|
|
|
|
|
|
def load_coqui_tts(): |
|
global coqui_tts_cache |
|
if coqui_tts_cache is not None: |
|
return coqui_tts_cache |
|
try: |
|
coqui_tts_cache = CoquiTTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=False) |
|
except Exception as e: |
|
raise RuntimeError(f"Failed to load Coqui XTTS-v2 TTS: {e}") |
|
return coqui_tts_cache |
|
|
|
def run_coqui_tts(text, lang): |
|
coqui_tts = load_coqui_tts() |
|
lang_code = coqui_lang_map[lang] |
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp: |
|
tmp_name = tmp.name |
|
try: |
|
coqui_tts.tts_to_file( |
|
text=text, |
|
file_path=tmp_name, |
|
language=lang_code |
|
) |
|
data, sr = sf.read(tmp_name) |
|
finally: |
|
if os.path.exists(tmp_name): |
|
os.remove(tmp_name) |
|
return sr, data |
|
|
|
|
|
|
|
|
|
def predict(audio, text, target_language): |
|
""" |
|
1. Obtain English text (via ASR if audio provided, else text). |
|
2. Translate English text to target_language. |
|
3. Generate TTS audio using either MMS TTS (VITS) or Coqui XTTS-v2. |
|
""" |
|
|
|
if text.strip(): |
|
english_text = text.strip() |
|
elif audio is not None: |
|
sample_rate, audio_data = audio |
|
if audio_data.dtype not in [np.float32, np.float64]: |
|
audio_data = audio_data.astype(np.float32) |
|
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1: |
|
audio_data = np.mean(audio_data, axis=1) |
|
if sample_rate != 16000: |
|
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000) |
|
asr_input = {"array": audio_data, "sampling_rate": 16000} |
|
asr_result = asr(asr_input) |
|
english_text = asr_result["text"].lower() |
|
else: |
|
return "No input provided.", "", None |
|
|
|
|
|
translator = get_translator(target_language) |
|
try: |
|
translation_result = translator(english_text) |
|
translated_text = translation_result[0]["translation_text"] |
|
except Exception as e: |
|
return english_text, f"Translation error: {e}", None |
|
|
|
|
|
try: |
|
tts_type = tts_config[target_language]["type"] |
|
if tts_type == "mms": |
|
sr, waveform = run_mms_tts(translated_text, target_language) |
|
elif tts_type == "coqui": |
|
sr, waveform = run_coqui_tts(translated_text, target_language) |
|
else: |
|
raise RuntimeError("Unknown TTS type for target language.") |
|
except Exception as e: |
|
return english_text, translated_text, f"TTS error: {e}" |
|
|
|
return english_text, translated_text, (sr, waveform) |
|
|
|
|
|
|
|
|
|
language_choices = [ |
|
"French", "Spanish", "Vietnamese", "Indonesian", "Turkish", "Portuguese", "Korean", "Chinese", "Japanese" |
|
] |
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"), |
|
gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"), |
|
gr.Dropdown(choices=language_choices, value="French", label="Target Language") |
|
], |
|
outputs=[ |
|
gr.Textbox(label="English Transcription"), |
|
gr.Textbox(label="Translation (Target Language)"), |
|
gr.Audio(label="Synthesized Speech") |
|
], |
|
title="Multimodal Language Learning Aid", |
|
description=( |
|
"This app performs the following tasks:\n" |
|
"1. Transcribes English speech using Wav2Vec2 (accepts text input as well).\n" |
|
"2. Translates the English text to the target language using Helsinki-NLP models.\n" |
|
"3. Provides speech:\n" |
|
" - For French, Spanish, Vietnamese, Indonesian, Turkish, Portuguese, and Korean: uses Facebook MMS TTS (VITS-based).\n" |
|
" - For Chinese and Japanese: uses myshell-ai MeloTTS models (work-in-progress).\n" |
|
"\nSelect your target language from the dropdown." |
|
), |
|
allow_flagging="never" |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch(server_name="0.0.0.0", server_port=7860) |
|
|