File size: 8,058 Bytes
e59dbdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22fef14
 
 
 
 
 
 
 
 
e59dbdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22fef14
 
e59dbdb
 
 
 
 
 
 
 
 
22fef14
 
 
 
 
 
 
 
 
 
e59dbdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22fef14
e59dbdb
 
 
 
 
 
 
 
 
 
 
 
 
 
22fef14
 
 
 
 
 
 
 
 
e59dbdb
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import json
from pathlib import Path
import sqlite3
import pickle
from functools import lru_cache
import threading
import pandas as pd

class TracePreprocessor:
    def __init__(self, db_path='preprocessed_traces.db'):
        self.db_path = db_path
        self.local = threading.local()
        self.create_tables()

    def get_conn(self):
        if not hasattr(self.local, 'conn'):
            self.local.conn = sqlite3.connect(self.db_path)
        return self.local.conn

    def create_tables(self):
        with self.get_conn() as conn:
            conn.execute('''
                CREATE TABLE IF NOT EXISTS preprocessed_traces (
                    benchmark_name TEXT,
                    agent_name TEXT,
                    raw_logging_results BLOB,
                    PRIMARY KEY (benchmark_name, agent_name)
                )
            ''')
            conn.execute('''
                CREATE TABLE IF NOT EXISTS failure_reports (
                    benchmark_name TEXT,
                    agent_name TEXT,
                    failure_report BLOB,
                    PRIMARY KEY (benchmark_name, agent_name)
                )
            ''')
            conn.execute('''
                CREATE TABLE IF NOT EXISTS parsed_results (
                    benchmark_name TEXT,
                    agent_name TEXT,
                    date TEXT,
                    total_cost REAL,
                    accuracy REAL,
                    precision REAL,
                    recall REAL,
                    f1_score REAL,
                    auc REAL,
                    overall_score REAL,
                    vectorization_score REAL,
                    fathomnet_score REAL,
                    feedback_score REAL,
                    house_price_score REAL,
                    spaceship_titanic_score REAL,
                    amp_parkinsons_disease_progression_prediction_score REAL,
                    cifar10_score REAL,
                    imdb_score REAL,
                    PRIMARY KEY (benchmark_name, agent_name)
                )
            ''')

    def preprocess_traces(self, processed_dir="evals_live"):
        processed_dir = Path(processed_dir)
        for file in processed_dir.glob('*.json'):
            with open(file, 'r') as f:
                data = json.load(f)
                agent_name = data['config']['agent_name']
                benchmark_name = data['config']['benchmark_name']

            try:
                raw_logging_results = pickle.dumps(data['raw_logging_results'])
                with self.get_conn() as conn:
                    conn.execute('''
                        INSERT OR REPLACE INTO preprocessed_traces 
                        (benchmark_name, agent_name, raw_logging_results) 
                        VALUES (?, ?, ?)
                    ''', (benchmark_name, agent_name, raw_logging_results))
            except Exception as e:
                print(f"Error preprocessing raw_logging_results in {file}: {e}")

            try:
                failure_report = pickle.dumps(data['failure_report'])
                with self.get_conn() as conn:
                    conn.execute('''
                        INSERT OR REPLACE INTO failure_reports 
                        (benchmark_name, agent_name, failure_report) 
                        VALUES (?, ?, ?)
                    ''', (benchmark_name, agent_name, failure_report))
            except Exception as e:
                print(f"Error preprocessing failure_report in {file}: {e}")

            try:
                config = data['config']
                results = data['results']
                with self.get_conn() as conn:
                    conn.execute('''
                        INSERT OR REPLACE INTO parsed_results 
                        (benchmark_name, agent_name, date, total_cost, accuracy, precision, recall, f1_score, auc, overall_score, vectorization_score, fathomnet_score, feedback_score, house_price_score, spaceship_titanic_score, amp_parkinsons_disease_progression_prediction_score, cifar10_score, imdb_score) 
                        VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
                    ''', (
                        benchmark_name,
                        agent_name,
                        config['date'],
                        results.get('total_cost'),
                        results.get('accuracy'),
                        results.get('precision'),
                        results.get('recall'),
                        results.get('f1_score'),
                        results.get('auc'),
                        results.get('overall_score'),
                        results.get('vectorization_score'),
                        results.get('fathomnet_score'),
                        results.get('feedback_score'),
                        results.get('house-price_score'),
                        results.get('spaceship-titanic_score'),
                        results.get('amp-parkinsons-disease-progression-prediction_score'),
                        results.get('cifar10_score'),
                        results.get('imdb_score')
                    ))
            except Exception as e:
                print(f"Error preprocessing parsed results in {file}: {e}")

    @lru_cache(maxsize=100)
    def get_analyzed_traces(self, agent_name, benchmark_name):
        with self.get_conn() as conn:
            cursor = conn.cursor()
            cursor.execute('''
                SELECT raw_logging_results FROM preprocessed_traces 
                WHERE benchmark_name = ? AND agent_name = ?
            ''', (benchmark_name, agent_name))
            result = cursor.fetchone()
        if result:
            return pickle.loads(result[0])
        return None

    @lru_cache(maxsize=100)
    def get_failure_report(self, agent_name, benchmark_name):
        with self.get_conn() as conn:
            cursor = conn.cursor()
            cursor.execute('''
                SELECT failure_report FROM failure_reports 
                WHERE benchmark_name = ? AND agent_name = ?
            ''', (benchmark_name, agent_name))
            result = cursor.fetchone()
        if result:
            return pickle.loads(result[0])
        return None
    
    def get_parsed_results(self, benchmark_name):
        with self.get_conn() as conn:
            query = '''
                SELECT * FROM parsed_results 
                WHERE benchmark_name = ?
                ORDER BY accuracy DESC
            '''
            df = pd.read_sql_query(query, conn, params=(benchmark_name,))

        # Round float columns to 3 decimal places
        float_columns = ['total_cost', 'accuracy', 'precision', 'recall', 'f1_score', 'auc', 'overall_score', 'vectorization_score', 'fathomnet_score', 'feedback_score', 'house-price_score', 'spaceship-titanic_score', 'amp-parkinsons-disease-progression-prediction_score', 'cifar10_score', 'imdb_score']
        for column in float_columns:
            if column in df.columns:
                df[column] = df[column].round(3)

        # Rename columns
        df = df.rename(columns={
            'agent_name': 'Agent Name',
            'date': 'Date',
            'total_cost': 'Total Cost',
            'accuracy': 'Accuracy',
            'precision': 'Precision',
            'recall': 'Recall',
            'f1_score': 'F1 Score',
            'auc': 'AUC',
            'overall_score': 'Overall Score',
            'vectorization_score': 'Vectorization Score',
            'fathomnet_score': 'Fathomnet Score',
            'feedback_score': 'Feedback Score',
            'house_price_score': 'House Price Score',
            'spaceship_titanic_score': 'Spaceship Titanic Score',
            'amp_parkinsons_disease_progression_prediction_score': 'AMP Parkinsons Disease Progression Prediction Score',
            'cifar10_score': 'CIFAR10 Score',
            'imdb_score': 'IMDB Score'
        })

        return df

if __name__ == '__main__':
    preprocessor = TracePreprocessor()
    preprocessor.preprocess_traces()