File size: 13,028 Bytes
8664fba
 
ca89148
4415138
575c750
8664fba
47280b7
9250161
 
 
 
 
 
47280b7
 
 
9250161
 
 
 
 
 
 
47280b7
 
 
 
 
e24146f
47280b7
 
 
 
 
 
 
 
 
9250161
fda0adb
47280b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a7e21a
 
 
 
 
e24146f
 
 
 
 
 
5a7e21a
 
 
 
e24146f
 
5a7e21a
e24146f
5a7e21a
 
e24146f
5a7e21a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8664fba
cd69490
4415138
 
8664fba
 
 
cd69490
 
 
 
 
 
 
 
 
e24146f
cd69490
4415138
 
 
 
 
 
 
 
 
 
 
31677d7
4415138
 
 
 
 
8664fba
fda0adb
60d47bb
8664fba
 
 
4415138
 
 
8664fba
 
 
4415138
 
 
 
 
 
 
 
 
cd69490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8664fba
575c750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e59dbdb
6102327
575c750
 
 
e59dbdb
575c750
 
e59dbdb
6102327
fda0adb
575c750
 
fda0adb
575c750
 
 
 
 
 
e59dbdb
 
 
 
575c750
 
 
 
 
 
 
 
 
 
 
a30f956
575c750
 
 
 
e59dbdb
e24146f
575c750
 
e59dbdb
575c750
 
 
 
 
 
a30f956
575c750
a30f956
 
 
 
e59dbdb
 
 
 
 
 
 
 
 
a30f956
e59dbdb
 
 
 
 
 
 
 
 
a30f956
 
 
575c750
 
a30f956
575c750
 
 
 
ad4ec76
 
 
 
 
 
 
a30f956
 
 
 
 
 
 
 
 
 
 
575c750
 
a30f956
575c750
 
 
 
 
 
 
 
 
 
ad4ec76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575c750
8664fba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import json
import plotly.express as px
from utils.pareto import Agent, compute_pareto_frontier
import plotly.graph_objects as go
import textwrap

def create_task_success_heatmap(df, benchmark_name):
    # Calculate agent accuracy
    agent_accuracy = df.groupby('Agent Name')['Success'].mean().sort_values(ascending=False)
    
    # Calculate task success rate
    task_success_rate = df.groupby('Task ID')['Success'].mean().sort_values(ascending=False)
    
    # Pivot the dataframe to create a matrix of agents vs tasks
    pivot_df = df.pivot(index='Agent Name', columns='Task ID', values='Success')
    
    # Sort the pivot table
    pivot_df = pivot_df.reindex(index=agent_accuracy.index, columns=task_success_rate.index)

    num_agents = len(pivot_df.index)
    row_height = 30  # Fixed height for each row in pixels
    total_height = num_agents * row_height
    
    # Create the heatmap
    fig = go.Figure(data=go.Heatmap(
        z=pivot_df.values,
        y=pivot_df.index,
        x=pivot_df.columns,
        colorscale=[[0, 'white'], [1, '#3498db']],  # White for failed, green for success
        showscale=False,
        hovertemplate='<b>Agent:</b> %{y}<br>' +
                      '<b>Task:</b> %{x}<br>' +
                      '<b>Status:</b> %{z}<extra></extra>'
    ))
    
    # Update the layout
    fig.update_layout(
        xaxis_title='Task ID',
        height=total_height,
        # width=1150,
        yaxis=dict(
            autorange='reversed',
            showticklabels=True,  # Show y-axis tick labels (agent names)
            showline=True,
            linecolor='black',
            showgrid=False
        ),
        xaxis=dict(
            side='top',
            showticklabels=False,  # Hide x-axis tick labels (task IDs)
            showline=True,
            linecolor='black',
            showgrid=False
        ),
        plot_bgcolor='white',
        paper_bgcolor='white',
        hoverlabel=dict(
            bgcolor="white", 
            font_size=12, 
            font_family="Arial"
        ),
        modebar=dict(
            activecolor='#1f77b4',
            orientation='h',
            bgcolor='rgba(255,255,255,0.8)',
            color='#777',
            add=['pan2d'],
            remove=[
                'zoom2d', 'zoomIn2d', 'zoomOut2d', 'resetScale2d',
                'hoverClosestCartesian', 'hoverCompareCartesian',
                'toggleSpikelines', 'lasso2d', 'lasso', 'select2d', 'select'
            ]
        ),
        dragmode='pan'
    )
    
    return fig

def create_bar_chart(categories, values, x_label, y_label, title):
    # Sort categories and values based on values in descending order
    sorted_data = sorted(zip(categories, values), key=lambda x: x[1], reverse=True)
    categories, values = zip(*sorted_data)

    # get total number of tasks
    total_tasks = sum(values)

    text_labels = [f"({value/total_tasks:.1%} of failures)" for value in values]


    fig = go.Figure(data=[go.Bar(
        y=categories,
        x=values,
        orientation='h',
        marker_color='#3498db',  # Same color as the scatter plot
        text=text_labels,
        textposition='auto',
        customdata=[f'{value} tasks ({value/total_tasks:.1%} of failures)' for value in values],
        textfont=dict(color='black', size=14, family='Arial', weight=2),
        hovertemplate='<b>%{y}</b><br>' +
                      'Affected Tasks: %{customdata}<extra></extra>'
    )])

    fig.update_layout(
        height=600,
        xaxis=dict(
            showline=True,
            linecolor='black',
            showgrid=False
        ),
        yaxis=dict(
            showline=True,
            linecolor='black',
            showgrid=False,
            autorange="reversed"  # This will put the category with the highest value at the top
        ),
        plot_bgcolor='white',
        paper_bgcolor='white',
        bargap=0.2,
        bargroupgap=0.1,
        hoverlabel=dict(bgcolor="white", font_size=12, font_family="Arial"),
        modebar=dict(
            activecolor='#1f77b4',
            orientation='h',
            bgcolor='rgba(255,255,255,0.8)',
            color='#777',
            add=['pan2d'],
            remove=[
                'zoom2d', 'zoomIn2d', 'zoomOut2d', 'resetScale2d',
                'hoverClosestCartesian', 'hoverCompareCartesian',
                'toggleSpikelines', 'lasso2d', 'lasso', 'select2d', 'select'
            ]
        ),
        dragmode='pan'
    )

    return fig

def create_scatter_plot(df, x: str, y: str, x_label: str = None, y_label: str = None, hover_data: list = None):
    agents = [Agent(row['Total Cost'], row['Accuracy']) for i, row in df.iterrows()]
    pareto_frontier = compute_pareto_frontier(agents)

    fig = px.scatter(df, 
                     x=x, 
                     y=y,
                     custom_data=hover_data)
    fig.update_traces(
            hovertemplate="<br>".join([
                "<b>Agent</b>: %{customdata[0]}",
                "<b>Total Cost</b>: $%{x:.1f}",
                "<b>Accuracy</b>: %{y:.1%}",
            ])
        )
    
    fig.update_traces(marker=dict(size=10, color='#3498db'),
                      hoverlabel=dict(bgcolor="white", font_size=12, font_family="Arial"),)
    

    # Sort the Pareto frontier points by x-coordinate
    pareto_points = sorted([(agent.total_cost, agent.accuracy) for agent in pareto_frontier], key=lambda x: x[0])
    
    # Add the Pareto frontier line
    fig.add_trace(go.Scatter(
        x=[point[0] for point in pareto_points],
        y=[point[1] for point in pareto_points],
        mode='lines',
        name='Pareto Frontier',
        line=dict(color='black', width=1, dash='dash')
    ))

    fig.update_yaxes(rangemode="tozero")
    fig.update_xaxes(rangemode="tozero")

    fig.update_layout(
    # width = 1150,
    height = 600,
    xaxis_title = x_label,
    yaxis_title = y_label,
    xaxis = dict(
        showline = True,
        linecolor = 'black',
        showgrid = False),
    yaxis = dict(
        showline = True,
        showgrid = False,
        linecolor = 'black'),
    plot_bgcolor = 'white',
    # Legend positioning
    legend=dict(
        yanchor="bottom",
        y=0.01,
        xanchor="right",
        x=0.98,
        bgcolor="rgba(255, 255, 255, 0.5)"  # semi-transparent white background
        ),
    modebar=dict(
            activecolor='#1f77b4',  # Color of active tool
            orientation='h',  # Vertical orientation
            bgcolor='rgba(255,255,255,0.8)',  # Slightly transparent white background
            color='#777',  # Color of inactive tools
            add = ['pan2d'],
            remove = [
                'zoom2d',
                'zoomIn2d',
                'zoomOut2d', 
                'resetScale2d',
                'hoverClosestCartesian', 
                'hoverCompareCartesian',
                'toggleSpikelines',
                'lasso2d',
                'lasso',
                'select2d',
                'select']
        ),
    dragmode='pan'
    )
    return fig


import plotly.graph_objects as go
import textwrap

def create_flow_chart(steps):
    node_x = []
    node_y = []
    edge_x = []
    edge_y = []
    node_text = []
    hover_text = []
    node_colors = []
    node_shapes = []
    
    # Define color and shape mappings
    color_map = {True: 'green', False: 'red'}  # True for success, False for challenges
    shape_map = {
        'plan': 'octagon',
        'tool': 'square',
        'retrieve': 'diamond',
        'other': 'circle'
    }
    
    for i, step in enumerate(steps):
        node_x.append(i)
        node_y.append(0)
        
        # Extract Description, Assessment, and new attributes
        analysis = step['analysis']
        if isinstance(analysis, str):
            try:
                analysis = json.loads(analysis)
            except json.JSONDecodeError:
                analysis = {}
        
        description = analysis.get('description', 'No description available.')
        assessment = analysis.get('assessment', 'No assessment available.')
        success = analysis.get('success', True)  # Assuming True if not specified
        # action_type = analysis.get('action_type', 'other')  # Default to 'other' if not specified
        step_headline = analysis.get('headline', '')
        
        # Set node color and shape based on attributes
        node_colors.append(color_map[success])
        # node_shapes.append(shape_map.get(action_type, 'circle'))
        
        # Wrap text to improve readability
        wrapped_description = '<br>'.join(textwrap.wrap(description, width=90, max_lines=20))
        wrapped_assessment = '<br>'.join(textwrap.wrap(assessment, width=90, max_lines=10))
        wrapped_outline = textwrap.shorten(step_headline, width=50, placeholder='')
        wrapped_outline = '' if wrapped_outline == '' else f": {wrapped_outline}"

        node_text_outline = '' if wrapped_outline == '' else f":<br>{'<br>'.join(textwrap.wrap(step_headline, width=30, placeholder=''))}"
        node_text.append(f"Step {i+1}{node_text_outline}")
        
        # Create formatted hover text without indentation
        hover_info = f"<b>Step {i+1}{wrapped_outline}</b><br><br>" \
                     f"<b>Description:</b><br>" \
                     f"{wrapped_description}<br><br>" \
                    #  f"<b>Assessment:</b><br>" \
                    #  f"{wrapped_assessment}<br><br>" \
                    #  f"<b>Successful:</b> {'Yes' if success else 'No'}<br>" \
                    #  f"<b>Action Type:</b> {action_type.capitalize()}"
        hover_text.append(hover_info)
        
        if i > 0:
            edge_x.extend([i-1, i, None])
            edge_y.extend([0, 0, None])
    
    node_trace = go.Scatter(
        x=node_x, y=node_y,
        mode='markers+text',
        text=node_text,
        textposition="top center",
        showlegend=False,
        hovertext=hover_text,
        hoverinfo='text',
        hoverlabel=dict(bgcolor="white", font_size=12, font_family="Arial"),
        marker=dict(
            # color=node_colors,
            color='#3498db',
            size=30,
            line_width=2,
            # symbol=node_shapes
        ))

    edge_trace = go.Scatter(
        x=edge_x, y=edge_y,
        line=dict(width=2, color='#888'),
        hoverinfo='none',
        showlegend=False,
        mode='lines')
    
    # Create legend traces
    legend_traces = []
    
    # # Color legend
    # for success, color in color_map.items():
    #     legend_traces.append(go.Scatter(
    #         x=[None], y=[None],
    #         mode='markers',
    #         marker=dict(size=10, color=color),
    #         showlegend=True,
    #         name=f"{'Success' if success else 'Issue'}"
    #     ))
    
    # # Shape legend
    # for action, shape in shape_map.items():
    #     legend_traces.append(go.Scatter(
    #         x=[None], y=[None],
    #         mode='markers',
    #         marker=dict(size=10, symbol=shape, color='gray'),
    #         showlegend=True,
    #         name=f"{action.capitalize()}"
    #     ))

    # Combine all traces
    all_traces = [edge_trace, node_trace] + legend_traces

    layout = go.Layout(
        showlegend=True,
        hovermode='closest',
        margin=dict(b=20,l=5,r=5,t=40),
        xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
        yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
        plot_bgcolor='white',
        paper_bgcolor='white',
        modebar=dict(
            activecolor='#1f77b4',  # Color of active tool
            orientation='h',  # Vertical orientation
            bgcolor='rgba(255,255,255,0.8)',  # Slightly transparent white background
            color='#777',  # Color of inactive tools
        ),
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=0.02,
            xanchor="right",
            x=1,
            bgcolor='rgba(255,255,255,0.8)',
            bordercolor='rgba(0,0,0,0.1)',
            borderwidth=1
        ),
    )
    
    fig = go.Figure(data=all_traces, layout=layout)
    
    fig.update_layout(legend=dict(
        orientation="h",
        yanchor="bottom",
        y=1.02,
        xanchor="right",
        x=1,
        bgcolor='rgba(255,255,255,0.8)',  # Set legend background to slightly transparent white
        bordercolor='rgba(0,0,0,0.1)',  # Add a light border to the legend
        borderwidth=1
    ),
    dragmode='pan'
    )

    config = {
        'add': ['pan2d'],
        'remove': [
            'zoom2d', 
            'zoomIn2d', 
            'zoomOut2d', 
            'resetScale2d',
            'hoverClosestCartesian', 
            'hoverCompareCartesian',
            'toggleSpikelines',
            'lasso2d',
            'lasso',
            'select2d',
            'select',
        ]
    }
    
    # Apply the config to the figure
    fig.update_layout(modebar=config)
    
    return fig