Spaces:
Running
Running
File size: 13,028 Bytes
8664fba ca89148 4415138 575c750 8664fba 47280b7 9250161 47280b7 9250161 47280b7 e24146f 47280b7 9250161 fda0adb 47280b7 5a7e21a e24146f 5a7e21a e24146f 5a7e21a e24146f 5a7e21a e24146f 5a7e21a 8664fba cd69490 4415138 8664fba cd69490 e24146f cd69490 4415138 31677d7 4415138 8664fba fda0adb 60d47bb 8664fba 4415138 8664fba 4415138 cd69490 8664fba 575c750 e59dbdb 6102327 575c750 e59dbdb 575c750 e59dbdb 6102327 fda0adb 575c750 fda0adb 575c750 e59dbdb 575c750 a30f956 575c750 e59dbdb e24146f 575c750 e59dbdb 575c750 a30f956 575c750 a30f956 e59dbdb a30f956 e59dbdb a30f956 575c750 a30f956 575c750 ad4ec76 a30f956 575c750 a30f956 575c750 ad4ec76 575c750 8664fba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import json
import plotly.express as px
from utils.pareto import Agent, compute_pareto_frontier
import plotly.graph_objects as go
import textwrap
def create_task_success_heatmap(df, benchmark_name):
# Calculate agent accuracy
agent_accuracy = df.groupby('Agent Name')['Success'].mean().sort_values(ascending=False)
# Calculate task success rate
task_success_rate = df.groupby('Task ID')['Success'].mean().sort_values(ascending=False)
# Pivot the dataframe to create a matrix of agents vs tasks
pivot_df = df.pivot(index='Agent Name', columns='Task ID', values='Success')
# Sort the pivot table
pivot_df = pivot_df.reindex(index=agent_accuracy.index, columns=task_success_rate.index)
num_agents = len(pivot_df.index)
row_height = 30 # Fixed height for each row in pixels
total_height = num_agents * row_height
# Create the heatmap
fig = go.Figure(data=go.Heatmap(
z=pivot_df.values,
y=pivot_df.index,
x=pivot_df.columns,
colorscale=[[0, 'white'], [1, '#3498db']], # White for failed, green for success
showscale=False,
hovertemplate='<b>Agent:</b> %{y}<br>' +
'<b>Task:</b> %{x}<br>' +
'<b>Status:</b> %{z}<extra></extra>'
))
# Update the layout
fig.update_layout(
xaxis_title='Task ID',
height=total_height,
# width=1150,
yaxis=dict(
autorange='reversed',
showticklabels=True, # Show y-axis tick labels (agent names)
showline=True,
linecolor='black',
showgrid=False
),
xaxis=dict(
side='top',
showticklabels=False, # Hide x-axis tick labels (task IDs)
showline=True,
linecolor='black',
showgrid=False
),
plot_bgcolor='white',
paper_bgcolor='white',
hoverlabel=dict(
bgcolor="white",
font_size=12,
font_family="Arial"
),
modebar=dict(
activecolor='#1f77b4',
orientation='h',
bgcolor='rgba(255,255,255,0.8)',
color='#777',
add=['pan2d'],
remove=[
'zoom2d', 'zoomIn2d', 'zoomOut2d', 'resetScale2d',
'hoverClosestCartesian', 'hoverCompareCartesian',
'toggleSpikelines', 'lasso2d', 'lasso', 'select2d', 'select'
]
),
dragmode='pan'
)
return fig
def create_bar_chart(categories, values, x_label, y_label, title):
# Sort categories and values based on values in descending order
sorted_data = sorted(zip(categories, values), key=lambda x: x[1], reverse=True)
categories, values = zip(*sorted_data)
# get total number of tasks
total_tasks = sum(values)
text_labels = [f"({value/total_tasks:.1%} of failures)" for value in values]
fig = go.Figure(data=[go.Bar(
y=categories,
x=values,
orientation='h',
marker_color='#3498db', # Same color as the scatter plot
text=text_labels,
textposition='auto',
customdata=[f'{value} tasks ({value/total_tasks:.1%} of failures)' for value in values],
textfont=dict(color='black', size=14, family='Arial', weight=2),
hovertemplate='<b>%{y}</b><br>' +
'Affected Tasks: %{customdata}<extra></extra>'
)])
fig.update_layout(
height=600,
xaxis=dict(
showline=True,
linecolor='black',
showgrid=False
),
yaxis=dict(
showline=True,
linecolor='black',
showgrid=False,
autorange="reversed" # This will put the category with the highest value at the top
),
plot_bgcolor='white',
paper_bgcolor='white',
bargap=0.2,
bargroupgap=0.1,
hoverlabel=dict(bgcolor="white", font_size=12, font_family="Arial"),
modebar=dict(
activecolor='#1f77b4',
orientation='h',
bgcolor='rgba(255,255,255,0.8)',
color='#777',
add=['pan2d'],
remove=[
'zoom2d', 'zoomIn2d', 'zoomOut2d', 'resetScale2d',
'hoverClosestCartesian', 'hoverCompareCartesian',
'toggleSpikelines', 'lasso2d', 'lasso', 'select2d', 'select'
]
),
dragmode='pan'
)
return fig
def create_scatter_plot(df, x: str, y: str, x_label: str = None, y_label: str = None, hover_data: list = None):
agents = [Agent(row['Total Cost'], row['Accuracy']) for i, row in df.iterrows()]
pareto_frontier = compute_pareto_frontier(agents)
fig = px.scatter(df,
x=x,
y=y,
custom_data=hover_data)
fig.update_traces(
hovertemplate="<br>".join([
"<b>Agent</b>: %{customdata[0]}",
"<b>Total Cost</b>: $%{x:.1f}",
"<b>Accuracy</b>: %{y:.1%}",
])
)
fig.update_traces(marker=dict(size=10, color='#3498db'),
hoverlabel=dict(bgcolor="white", font_size=12, font_family="Arial"),)
# Sort the Pareto frontier points by x-coordinate
pareto_points = sorted([(agent.total_cost, agent.accuracy) for agent in pareto_frontier], key=lambda x: x[0])
# Add the Pareto frontier line
fig.add_trace(go.Scatter(
x=[point[0] for point in pareto_points],
y=[point[1] for point in pareto_points],
mode='lines',
name='Pareto Frontier',
line=dict(color='black', width=1, dash='dash')
))
fig.update_yaxes(rangemode="tozero")
fig.update_xaxes(rangemode="tozero")
fig.update_layout(
# width = 1150,
height = 600,
xaxis_title = x_label,
yaxis_title = y_label,
xaxis = dict(
showline = True,
linecolor = 'black',
showgrid = False),
yaxis = dict(
showline = True,
showgrid = False,
linecolor = 'black'),
plot_bgcolor = 'white',
# Legend positioning
legend=dict(
yanchor="bottom",
y=0.01,
xanchor="right",
x=0.98,
bgcolor="rgba(255, 255, 255, 0.5)" # semi-transparent white background
),
modebar=dict(
activecolor='#1f77b4', # Color of active tool
orientation='h', # Vertical orientation
bgcolor='rgba(255,255,255,0.8)', # Slightly transparent white background
color='#777', # Color of inactive tools
add = ['pan2d'],
remove = [
'zoom2d',
'zoomIn2d',
'zoomOut2d',
'resetScale2d',
'hoverClosestCartesian',
'hoverCompareCartesian',
'toggleSpikelines',
'lasso2d',
'lasso',
'select2d',
'select']
),
dragmode='pan'
)
return fig
import plotly.graph_objects as go
import textwrap
def create_flow_chart(steps):
node_x = []
node_y = []
edge_x = []
edge_y = []
node_text = []
hover_text = []
node_colors = []
node_shapes = []
# Define color and shape mappings
color_map = {True: 'green', False: 'red'} # True for success, False for challenges
shape_map = {
'plan': 'octagon',
'tool': 'square',
'retrieve': 'diamond',
'other': 'circle'
}
for i, step in enumerate(steps):
node_x.append(i)
node_y.append(0)
# Extract Description, Assessment, and new attributes
analysis = step['analysis']
if isinstance(analysis, str):
try:
analysis = json.loads(analysis)
except json.JSONDecodeError:
analysis = {}
description = analysis.get('description', 'No description available.')
assessment = analysis.get('assessment', 'No assessment available.')
success = analysis.get('success', True) # Assuming True if not specified
# action_type = analysis.get('action_type', 'other') # Default to 'other' if not specified
step_headline = analysis.get('headline', '')
# Set node color and shape based on attributes
node_colors.append(color_map[success])
# node_shapes.append(shape_map.get(action_type, 'circle'))
# Wrap text to improve readability
wrapped_description = '<br>'.join(textwrap.wrap(description, width=90, max_lines=20))
wrapped_assessment = '<br>'.join(textwrap.wrap(assessment, width=90, max_lines=10))
wrapped_outline = textwrap.shorten(step_headline, width=50, placeholder='')
wrapped_outline = '' if wrapped_outline == '' else f": {wrapped_outline}"
node_text_outline = '' if wrapped_outline == '' else f":<br>{'<br>'.join(textwrap.wrap(step_headline, width=30, placeholder=''))}"
node_text.append(f"Step {i+1}{node_text_outline}")
# Create formatted hover text without indentation
hover_info = f"<b>Step {i+1}{wrapped_outline}</b><br><br>" \
f"<b>Description:</b><br>" \
f"{wrapped_description}<br><br>" \
# f"<b>Assessment:</b><br>" \
# f"{wrapped_assessment}<br><br>" \
# f"<b>Successful:</b> {'Yes' if success else 'No'}<br>" \
# f"<b>Action Type:</b> {action_type.capitalize()}"
hover_text.append(hover_info)
if i > 0:
edge_x.extend([i-1, i, None])
edge_y.extend([0, 0, None])
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
text=node_text,
textposition="top center",
showlegend=False,
hovertext=hover_text,
hoverinfo='text',
hoverlabel=dict(bgcolor="white", font_size=12, font_family="Arial"),
marker=dict(
# color=node_colors,
color='#3498db',
size=30,
line_width=2,
# symbol=node_shapes
))
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=2, color='#888'),
hoverinfo='none',
showlegend=False,
mode='lines')
# Create legend traces
legend_traces = []
# # Color legend
# for success, color in color_map.items():
# legend_traces.append(go.Scatter(
# x=[None], y=[None],
# mode='markers',
# marker=dict(size=10, color=color),
# showlegend=True,
# name=f"{'Success' if success else 'Issue'}"
# ))
# # Shape legend
# for action, shape in shape_map.items():
# legend_traces.append(go.Scatter(
# x=[None], y=[None],
# mode='markers',
# marker=dict(size=10, symbol=shape, color='gray'),
# showlegend=True,
# name=f"{action.capitalize()}"
# ))
# Combine all traces
all_traces = [edge_trace, node_trace] + legend_traces
layout = go.Layout(
showlegend=True,
hovermode='closest',
margin=dict(b=20,l=5,r=5,t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
plot_bgcolor='white',
paper_bgcolor='white',
modebar=dict(
activecolor='#1f77b4', # Color of active tool
orientation='h', # Vertical orientation
bgcolor='rgba(255,255,255,0.8)', # Slightly transparent white background
color='#777', # Color of inactive tools
),
legend=dict(
orientation="h",
yanchor="bottom",
y=0.02,
xanchor="right",
x=1,
bgcolor='rgba(255,255,255,0.8)',
bordercolor='rgba(0,0,0,0.1)',
borderwidth=1
),
)
fig = go.Figure(data=all_traces, layout=layout)
fig.update_layout(legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
bgcolor='rgba(255,255,255,0.8)', # Set legend background to slightly transparent white
bordercolor='rgba(0,0,0,0.1)', # Add a light border to the legend
borderwidth=1
),
dragmode='pan'
)
config = {
'add': ['pan2d'],
'remove': [
'zoom2d',
'zoomIn2d',
'zoomOut2d',
'resetScale2d',
'hoverClosestCartesian',
'hoverCompareCartesian',
'toggleSpikelines',
'lasso2d',
'lasso',
'select2d',
'select',
]
}
# Apply the config to the figure
fig.update_layout(modebar=config)
return fig |