Spaces:
Running
Running
File size: 18,718 Bytes
8664fba 5f9c44d 8664fba 0b3117f a60497d ca89148 1783518 5f9c44d 07044da ca89148 066588c e59dbdb e24146f e59dbdb 066588c 575c750 eb2a754 575c750 bb94aa7 5f9c44d 8664fba 0b3117f eb2a754 0b3117f 8664fba f9140ad e59dbdb 0b3117f 5a7e21a e59dbdb a60497d 5a7e21a ca89148 066588c ca89148 0b3117f ca89148 066588c 0b3117f ca89148 0b3117f f9140ad ca89148 0b3117f ca89148 066588c 0b3117f 066588c ca89148 0b3117f f9140ad ca89148 0b3117f ca89148 e59dbdb 066588c 0b3117f 596cb18 e59dbdb 0b3117f e59dbdb 0b3117f ca89148 0b3117f 575c750 ca89148 07044da e24146f 07044da e24146f 07044da e24146f 07044da e24146f 07044da e24146f 07044da e24146f 07044da 19bb306 5a7e21a e24146f 5a7e21a e24146f 5a7e21a e24146f bc0f99c c50a008 6dcfa1f c50a008 2faf3bd c50a008 2faf3bd c50a008 e24146f 2faf3bd e24146f 2faf3bd e24146f 2faf3bd e24146f b335ab8 2faf3bd b335ab8 2faf3bd b335ab8 2faf3bd b335ab8 2faf3bd b335ab8 2faf3bd b335ab8 2faf3bd e24146f b335ab8 e24146f b335ab8 596cb18 b335ab8 e24146f 8664fba 044c8f9 b335ab8 8664fba 066588c 8664fba 64319c0 f5fc72d 64319c0 f5fc72d 64319c0 8664fba b335ab8 e24146f b335ab8 066588c 64319c0 8de3f0a 8664fba 044c8f9 2c91b5e 1d41341 596cb18 ca89148 f9140ad 47280b7 ff06039 47280b7 f9140ad 47280b7 9f9bed8 ca89148 a60497d 9f9bed8 5f9c44d ca89148 a60497d 9f9bed8 5f9c44d ca89148 1d41341 ca89148 e59dbdb ca89148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import gradio as gr
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
import config
from envs import RESULTS_REPO_ID, REPO_ID, API, HF_TOKEN
from pathlib import Path
import pandas as pd
import os
import json
from utils.viz import create_scatter_plot, create_flow_chart, create_bar_chart, create_task_success_heatmap, create_leaderboard
from utils.processing import check_and_process_uploads
from huggingface_hub import snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime
import json
import re
import markdown
import asyncio
from apscheduler.schedulers.asyncio import AsyncIOScheduler
import weave
from utils.db import TracePreprocessor
from gradio.themes.soft import Soft
preprocessor = TracePreprocessor()
from datetime import datetime
abs_path = Path(__file__).parent
def restart_space():
API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)
# New function to download results
def download_latest_results():
print("Downloading latest results...")
snapshot_download(RESULTS_REPO_ID,
local_dir= "evals_upload",
repo_type='dataset',
tqdm_class=None,
etag_timeout=30,
max_workers=4,
)
print("Download complete.")
def get_analyzed_traces(agent_name, benchmark_name):
return preprocessor.get_analyzed_traces(agent_name, benchmark_name)
def get_failure_report(agent_name, benchmark_name):
return preprocessor.get_failure_report(agent_name, benchmark_name)
def parse_json_files(folder_path, benchmark_name, aggregate=True):
return preprocessor.get_parsed_results(benchmark_name, aggregate=aggregate)
def update_agent_dropdown(benchmark_name, metric):
df = parse_json_files(os.path.join(abs_path, "evals_live"), benchmark_name)
agents = df['Agent Name'].tolist()
best_agent = get_best_agent(benchmark_name, metric)
return gr.Dropdown(choices=agents, value=best_agent, label="Select Agent")
def get_best_agent(benchmark_name, metric):
df = parse_json_files(os.path.join(abs_path, "evals_live"), benchmark_name)
return df.loc[df[metric].idxmax()]['Agent Name']
def update_task_analysis(benchmark_name, agent_name):
if not agent_name:
return "Please select an agent.", None, None, ""
analyzed_traces = get_analyzed_traces(agent_name, benchmark_name)
if not analyzed_traces:
return f"No analysis available for agent: {agent_name}", None, None, ""
task_ids = list(analyzed_traces.keys())
overview, flow_chart, _ = update_task_details(benchmark_name, agent_name, task_ids[0])
return overview, flow_chart, gr.Dropdown(choices=task_ids, value=task_ids[0], label="Select Task"), ""
def update_task_details(benchmark_name, agent_name, task_id):
if not task_id:
return "Please select a task.", None, ""
analyzed_traces = get_analyzed_traces(agent_name, benchmark_name)
if not analyzed_traces or task_id not in analyzed_traces:
return f"No analysis available for task: {task_id}", None, ""
analysis = analyzed_traces[task_id]
summary = analysis.get('task_analysis', {})
overview = f"### Summary\n\n{summary.get('overview', 'No overview available.')}\n\n"
# overview += f"### Successes\n{summary.get('key_successes', 'No successes listed.')}\n\n"
# overview += f"### Challenges\n{summary.get('main_challenges', 'No challenges listed.')}\n\n"
# overview += f"### Overall Assessment\n{summary.get('overall_assessment', 'No assessment available.')}\n\n"
if summary.get('overview', 'No overview available.') != "Not available":
flow_chart = create_flow_chart(analysis['steps'])
else:
flow_chart = None
return overview, flow_chart, ""
def format_call_info(step, step_index):
call_data = step['call_data']
analysis = step['analysis']
def format_json(obj):
# if isinstance(obj, dict) and 'choices' in obj:
# # Special handling for message content
# formatted_content = format_message_content(obj['choices'][0])
# return f'<div class="message-content">{formatted_content}</div>'
# else:
json_str = json.dumps(obj, indent=2)
json_str = json_str.replace(' ', ' ')
json_str = json_str.replace('\n', '<br>')
return f'<div class="json-wrapper">{json_str}</div>'
# Currently not used but we can enable it to format message content
def format_message_content(content):
# Convert Markdown to HTML
html_content = markdown.markdown(content)
# Replace ``` code blocks with styled pre blocks
html_content = re.sub(r'```python\n(.*?)```', lambda m: f'<pre class="code-block">{m.group(1)}</pre>', html_content, flags=re.DOTALL)
return html_content
formatted_info = f"""
<style>
.json-wrapper {{
white-space: pre-wrap;
word-wrap: break-word;
font-family: monospace;
max-height: 300px;
overflow-y: auto;
background-color: #f5f5f5;
padding: 10px;
border-radius: 5px;
}}
.message-content {{
white-space: normal;
word-wrap: break-word;
font-family: Arial, sans-serif;
max-height: 500px;
overflow-y: auto;
background-color: #ffffff;
padding: 10px;
border-radius: 5px;
border: 1px solid #e0e0e0;
}}
.code-block {{
background-color: #f0f0f0;
padding: 10px;
border-radius: 5px;
font-family: monospace;
white-space: pre-wrap;
word-wrap: break-word;
}}
</style>
<h3>Step {step_index + 1}: {analysis.get('headline', '')}</h3>
<h4>Call Metadata</h4>
<ul>
<li><strong>Weave Task ID:</strong> {call_data['weave_task_id']}</li>
<li><strong>Trace ID:</strong> {call_data['trace_id']}</li>
<li><strong>Project ID:</strong> {call_data['project_id']}</li>
<li><strong>Created Timestamp:</strong> {datetime.fromtimestamp(call_data['created_timestamp'])}</li>
<li><strong>Model:</strong> {call_data['inputs']['model']}</li>
</ul>
<h4>Inputs</h4>
{format_json(call_data['inputs'])}
<h4>Outputs</h4>
{format_json(call_data['outputs'])}
<h4>Usage</h4>
{format_json(call_data['summary'])}
<h4>Analysis</h4>
<ul>
<li><strong>Description:</strong> {analysis['description']}</li>
<li><strong>Assessment:</strong> {analysis['assessment']}</li>
<li><strong>Success:</strong> {analysis['success']}</li>
<li><strong>Action Type:</strong> {analysis['action_type']}</li>
</ul>
"""
return formatted_info
def update_failure_report(agent_name, benchmark_name):
failure_report = get_failure_report(agent_name, benchmark_name)
if not failure_report:
return "No failure report available for this agent.", None
# Create overview of failure categories
categories_overview = "### Failure Categories:\n\n"
for category in failure_report['failure_categories']:
categories_overview += f"#### {category['category_name']}\n"
categories_overview += f"{category['description']}\n\n"
# Count tasks affected by each category
category_counts = {}
for task, classification in failure_report['task_classifications'].items():
category_id = classification['category_id']
category_counts[category_id] = category_counts.get(category_id, 0) + 1
# Prepare data for bar chart
categories = [cat['category_name'] for cat in failure_report['failure_categories']]
counts = [category_counts.get(str(i+1), 0) for i in range(len(categories))]
# Create bar chart
chart = create_bar_chart(categories, counts, "Failure Categories", "Number of Affected Tasks", "Failure Categories Distribution")
return categories_overview, chart
from gradio.themes.utils import colors, fonts, sizes
from typing import Iterable
class MyTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.blue,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("Lato"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
my_theme = MyTheme()
with gr.Blocks(theme=my_theme, css='css.css', title="CORE-Bench Leaderboard") as demo:
# gr.Markdown((Path(__file__).parent / "header.md").read_text(), elem_classes=["text-large"])
gr.HTML("""
<style>
.hal-header {
color: #ecf0f1;
border-radius: 10px;
padding: 40px 20px;
text-align: center;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.hal-title {
font-size: 2.5em;
font-weight: 700;
margin: 0;
letter-spacing: 2px;
text-transform: uppercase;
}
.hal-subtitle {
font-size: 1.2em;
font-weight: 300;
margin-top: 15px;
margin-left: auto;
margin-right: auto;
line-height: 1.6;
text-align: center;
}
.hal-highlight {
color: #3498db;
font-weight: 600;
}
</style>
<header class="hal-header">
<h1 class="hal-title">CORE-Bench Leaderboard</h1>
<p class="hal-subtitle">
A leaderboard evaluating agent performance on CORE-Bench.
</p>
</header>""")
gr.HTML("""
<style>
.feature-row {
display: flex;
justify-content: space-between;
margin-top: 20px;
margin-bottom: 20px;
}
.feature-column {
flex: 1;
padding: 25px;
background-color: #ffffff;
border-radius: 10px;
margin: 0 15px;
text-align: center;
box-shadow: 0 6px 12px rgba(0, 0, 0, 0.1);
display: flex;
flex-direction: column;
align-items: center;
border-top: 5px solid #3498db;
transition: transform 0.3s ease, box-shadow 0.3s ease;
}
.feature-column:hover {
transform: translateY(-5px);
box-shadow: 0 5px 10px rgba(0, 0, 0, 0.15);
}
.feature-keyword {
font-size: 1.2em;
font-weight: bold;
color: #1b9e77;
margin-bottom: 15px;
text-transform: uppercase;
letter-spacing: 1px;
}
.feature-content {
flex-grow: 1;
}
.feature-description {
font-size: 0.95em;
line-height: 1.6;
color: #333;
}
.button-container {
display: flex;
justify-content: center;
margin-top: 2px;
}
.button-container .button {
margin: 0 10px;
padding: 15px 25px;
font-size: 1em;
font-weight: bold;
color: #fff !important; /* Force white text color */
background-color: #3498db !important; /* Force background color */
border: none;
border-radius: 5px;
text-decoration: none !important; /* Force no underline */
text-align: center;
transition: background-color 0.3s ease;
cursor: pointer;
height: 50px;
}
.button-container .button:hover {
background-color: #2980b9 !important; /* Force hover color */
}
.button:visited {
color: #fff; /* Keep text color white when link is visited */
}
</style>
<div class="button-container">
<a href="https://arxiv.org/abs/2409.11363" class="button">Paper</a>
<a href="https://github.com/siegelz/core-bench" class="button">Github</a>
<a href="https://huggingface.co/datasets/siegelz/core-bench" class="button">Dataset</a>
</div>
</br>
<h2 class="section-heading" id="leaderboards">Leaderboards</h2>
<p>
CORE-Bench evaluates the ability of agents to computationally reproduce the results of published scientific papers. Agents are given the codebase of a paper and must install all libraries and dependencies, run the code, and read through the output and figures to answer questions about the paper. The benchmark has tasks at three difficulty levels:
</p>
<p>
<i><b>CORE-Bench-Hard:</b></i> The agent is given the codebase of the paper and must install all libraries and dependencies, run the code, and read through the output and figures to answer questions about the paper. This level is most akin to fully reproducing a paper and is the most realistic and challenging level.
</p>
<p>
<i><b>CORE-Bench-Medium:</b></i> The agent is given a Dockerfile and instructions on how to use the Dockerfile to fully reproduce the paper. This level mainly evaluates agents ability to use and interact with the terminal. The agent must then answer questions about the output of the code, as in the above level.
</p>
<p>
<i><b>CORE-Bench-Easy:</b></i> The agent is given the output of the code and must answer questions about the output without running any code. To answer questions, agents must navigate through the terminal output as well as files and figures generated by the code.
</p>
""")
with gr.Tabs() as tabs:
with gr.Tab("CORE-Bench-Hard"):
with gr.Row():
with gr.Column(scale=2):
Leaderboard(
value=create_leaderboard(parse_json_files(os.path.join(abs_path, "evals_live"), 'corebench_hard'), ci_metrics=["Accuracy", "Total Cost"]),
select_columns=SelectColumns(
default_selection=config.COREBENCH_ON_LOAD_COLUMNS + ["Verified"],
cant_deselect=["Agent Name"],
label="Select Columns to Display:",
),
hide_columns=config.COREBENCH_HIDE_COLUMNS,
search_columns=config.COREBENCH_SEARCH_COLUMNS,
)
# gr.Markdown("""*Error ranges span from the lowest to highest observed values in repeated runs.*""", elem_classes=["text-right"])
with gr.Row():
gr.Markdown("### Accuracy vs. Cost on CORE-Bench-Hard")
with gr.Row():
scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'corebench_hard', aggregate=False), "Total Cost", "Accuracy", "Total Cost (in USD)", "Accuracy", ["Agent Name"]))
with gr.Tab("CORE-Bench-Medium"):
with gr.Row():
with gr.Column(scale=2):
Leaderboard(
value=create_leaderboard(parse_json_files(os.path.join(abs_path, "evals_live"), 'corebench_medium'), ci_metrics=["Accuracy", "Total Cost"]),
select_columns=SelectColumns(
default_selection=config.COREBENCH_ON_LOAD_COLUMNS + ["Verified"],
cant_deselect=["Agent Name"],
label="Select Columns to Display:",
),
hide_columns=config.COREBENCH_HIDE_COLUMNS,
search_columns=config.COREBENCH_SEARCH_COLUMNS,
)
# gr.Markdown("""*Error ranges span from the lowest to highest observed values in repeated runs.*""", elem_classes=["text-right"])
with gr.Row():
gr.Markdown("### Accuracy vs. Cost on CORE-Bench-Medium")
with gr.Row():
scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'corebench_medium', aggregate=False), "Total Cost", "Accuracy", "Total Cost (in USD)", "Accuracy", ["Agent Name"]))
with gr.Tab("CORE-Bench-Easy"):
with gr.Row():
with gr.Column(scale=2):
Leaderboard(
value=create_leaderboard(parse_json_files(os.path.join(abs_path, "evals_live"), 'corebench_easy'), ci_metrics=["Accuracy", "Total Cost"]),
select_columns=SelectColumns(
default_selection=config.COREBENCH_ON_LOAD_COLUMNS + ["Verified"],
cant_deselect=["Agent Name"],
label="Select Columns to Display:",
),
hide_columns=config.COREBENCH_HIDE_COLUMNS,
search_columns=config.COREBENCH_SEARCH_COLUMNS,
)
# gr.Markdown("""*Error ranges span from the lowest to highest observed values in repeated runs.*""", elem_classes=["text-right"])
with gr.Row():
gr.Markdown("### Accuracy vs. Cost on CORE-Bench-Easy")
with gr.Row():
scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'corebench_easy', aggregate=False), "Total Cost", "Accuracy", "Total Cost (in USD)", "Accuracy", ["Agent Name"]))
# Will trigger autoscaling of plots when tabs are switched
tabs.select(fn=None, inputs=None, outputs=None, js="""
function() {
setTimeout(function() {
window.dispatchEvent(new Event('resize'));
}, 100);
}
""")
gr.HTML("""<h2 class="section-heading" id="agent-submission">How can I submit agents to the leaderboard?</h2>""")
gr.Markdown((Path(__file__).parent / "agent_submission.md").read_text())
async def main():
# Preprocess traces
# preprocessor = TracePreprocessor()
# preprocessor.preprocess_traces('evals_live')
# preprocessor = TracePreprocessor()
# Download the results from the Hugging Face Hub
# await asyncio.to_thread(download_latest_results)
# # Check for new uploads and process them
# await check_and_process_uploads()
scheduler = AsyncIOScheduler()
scheduler.add_job(restart_space, "interval", hours=1)
# scheduler.add_job(download_latest_results, "interval", hours=1)
# scheduler.add_job(check_and_process_uploads, "interval", hours=1)
scheduler.start()
await demo.launch(favicon_path="hal.png")
if __name__ == "__main__":
weave.init(f'leaderboard_{datetime.now().strftime("%Y%m%d%H%M%S")}')
asyncio.run(main()) |