File size: 13,493 Bytes
dd2764e 913027c dd2764e 9ec1233 dd2764e 6d79cbc dd2764e 6d79cbc dd2764e 6eacdfa 6a14085 6d79cbc 6eacdfa dd2764e 37730df d5e2a08 dd2764e 156739d dd2764e c605af2 dd2764e 6eacdfa dd2764e d5e2a08 dd2764e d5e2a08 6d79cbc dd2764e 37730df c37add1 dd2764e 37730df dd2764e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import spaces
import bm25s
import gradio as gr
import json
import Stemmer
import time
import torch
import os
from transformers import AutoTokenizer, AutoModel, pipeline , AutoModelForSequenceClassification, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pandas as pd
import torch.nn.functional as F
from datasets import concatenate_datasets, load_dataset, load_from_disk
from huggingface_hub import hf_hub_download
from contextual import ContextualAI
from openai import AzureOpenAI
from datetime import datetime
import sys
from datetime import datetime
from pathlib import Path
from uuid import uuid4
import pickle
from huggingface_hub import CommitScheduler
JSON_DATASET_DIR = Path("json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
JSON_DATASET_PATH = JSON_DATASET_DIR / f"train-{uuid4()}.json"
scheduler = CommitScheduler(
repo_id="ai-law-society-lab/federal-queries-save-dataset",
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="data", token=os.getenv('hf_token')
)
sandbox_api_key=os.getenv('AI_SANDBOX_KEY')
sandbox_endpoint="https://api-ai-sandbox.princeton.edu/"
sandbox_api_version="2024-02-01"
def text_prompt_call(model_to_be_used, system_prompt, user_prompt ):
client_gpt = AzureOpenAI(
api_key=sandbox_api_key,
azure_endpoint = sandbox_endpoint,
api_version=sandbox_api_version # current api version not in preview
)
response = client_gpt.chat.completions.create(
model=model_to_be_used,
temperature=0.7, # temperature = how creative/random the model is in generating response - 0 to 1 with 1 being most creative
max_tokens=1000, # max_tokens = token limit on context to send to the model
messages=[
{"role": "system", "content": system_prompt}, # describes model identity and purpose
{"role": "user", "content": user_prompt}, # user prompt
]
)
return response.choices[0].message.content
def format_metadata_as_str(metadata):
try:
out = metadata["case_name"] + ", " + metadata["court_short_name"] + ", " + metadata["date_filed"] + ", precedential status " + metadata["precedential_status"]
except:
out = ""
return out
def show_user_query(user_message, history):
'''
Displays user query in the chatbot and removes from textbox.
:param user_message: user query inputted.
:param history: 2D array representing chatbot-user conversation.
:return:
'''
return "", history + [[user_message, None]]
def format_metadata_for_reranking(metadata, text, idx):
#print (metadata)
keys = [["case_name", "case name"], ["court_short_name", "court"], ["date_filed", "year"], ["citation_count", "citation count"], ["precedential_status", "precedential status"]]
out_str = []
out_str = ["<id>" + str(idx) + "</id>"]
for key in keys:
i,j = key
#print (i,j)
#print (metadata[i])
out_str.append("<" + j + ">" + str(metadata[i]) + "</" + j + ">")
out_str.append("<paragraph>" + " ".join(text.split()) + "</paragraph>")
return "\n".join(out_str) + "\n"
def run_extractive_qa(query, contexts):
extracted_passages = extractive_qa([{"question": query, "context": context} for context in contexts])
return extracted_passages
@spaces.GPU(duration=15)
def respond_user_query(history):
'''
Overwrite the value of current pairing's history with generated text
and displays response character-by-character with some lag.
:param history: 2D array of chatbot history filled with user-bot interactions
:return: history updated with bot's latest message.
'''
start_time_global = time.time()
query = history[0][0]
start_time_global = time.time()
responses = run_retrieval(query)
print("--- run retrieval: %s seconds ---" % (time.time() - start_time_global))
#print (responses)
contexts = [individual_response["text"] for individual_response in responses][:NUM_RESULTS]
extracted_passages = run_extractive_qa(query, contexts)
for individual_response, extracted_passage in zip(responses, extracted_passages):
start, end = extracted_passage["start"], extracted_passage["end"]
# highlight text
text = individual_response["text"]
text = text[:start] + " **" + text[start:end] + "** " + text[end:]
# display queries in interface
formatted_response = "##### "
if individual_response["meta_data"]:
formatted_response += individual_response["meta_data"]
else:
formatted_response += individual_response["opinion_idx"]
formatted_response += "\n" + text + "\n\n"
history = history + [[None, formatted_response]]
print("--- Extractive QA: %s seconds ---" % (time.time() - start_time_global))
return [history, responses]
def switch_to_reviewing_framework():
'''
Replaces textbox for entering user query with annotator review select.
:return: updated visibility for textbox and radio button props.
'''
return gr.Textbox(visible=False), gr.Dataset(visible=False), gr.Textbox(visible=True, interactive=True), gr.Button(visible=True)
def reset_interface():
'''
Resets chatbot interface to original position where chatbot history,
reviewing is invisbile is empty and user input textbox is visible.
:return: textbox visibility, review radio button invisibility,
next_button invisibility, empty chatbot
'''
# remove tmp highlighted word documents
#for fn in os.listdir("tmp-docs"):
# os.remove(os.path.join("tmp-docs", fn))
return gr.Textbox(visible=True), gr.Button(visible=False), gr.Textbox(visible=False, value=""), None, gr.JSON(visible=False, value=[]), gr.Dataset(visible=True)
###################################################
def mark_like(response_json, like_data: gr.LikeData):
index_of_msg_reviewed = like_data.index[0] - 1 # 0-indexing
# add liked information to res
response_json[index_of_msg_reviewed]["is_msg_liked"] = like_data.liked
return response_json
"""
def save_json(name: str, greetings: str) -> None:
"""
def register_review(history, additional_feedback, response_json):
'''
Writes user review to output file.
:param history: 2D array representing bot-user conversation so far.
:return: None, writes to output file.
'''
res = { "user_query": history[0][0],
"responses": response_json,
"timestamp": datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
"additional_feedback": additional_feedback
}
with scheduler.lock:
with JSON_DATASET_PATH.open("a") as f:
json.dump(res, f)
f.write("\n")
# load search functionality here
def load_bm25():
stemmer = Stemmer.Stemmer("english")
retriever = bm25s.BM25.load("NJ_index_LLM_chunking", mmap=False)
return retriever, stemmer # titles
def run_bm25(query):
query_tokens = bm25s.tokenize(query, stemmer=stemmer)
results, scores = retriever.retrieve(query_tokens, k=5)
return results[0]
def load_faiss_index(embeddings):
nb, d = embeddings.shape # database size, dimension
faiss_index = faiss.IndexFlatL2(d) # build the index
faiss_index.add(embeddings) # add vectors to the index
return faiss_index
#@spaces.GPU(duration=10)
def run_dense_retrieval(query):
if "NV" in model_name:
query_prefix = "Instruct: Given a question, retrieve passages that answer the question\nQuery: "
max_length = 32768
print (query)
with torch.no_grad():
query_embeddings = model.encode([query], instruction=query_prefix, max_length=max_length)
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
query_embeddings = query_embeddings.cpu().numpy()
return query_embeddings
#TODO implement this
def rerank_with_chatGPT(query, search_results):
system_prompt = """You are given a list of search results for a query. Rerank the search results such that the paragraphs answering the query in the most comprehensive way are listed first. If multiple paragraphs are equally good, prioritize these according to the metadata as stated in the query. If the query doesn't specify this further, prioritize first paragraphs from higher courts, then paragraphs with more citations, then paragraphs from more recent opinions and lastly published opinions.
Return a python list with the ids of the five highest ranking results, nothing else.
<query>""" + query + "</query>\n\n"
user_prompt = []
for i in search_results[:15]:
user_prompt.append(format_metadata_for_reranking(i["metadata_reranking"], i["text"], i["index"]))
user_prompt = "\n".join(user_prompt)
out = text_prompt_call("gpt-4o", system_prompt, user_prompt)
try:
out = literal_eval(out)
except:
out = search_results[:5]
search_results_as_dict = {str(i["index"]):i for i in search_results}
out_dict = []
for i in out:
out_dict.append(search_results_as_dict[i])
return out_dict
# let's do it
def run_retrieval(query):
query = " ".join(query.split())
print ("query", query)
query_embeddings = run_dense_retrieval(query)
query_embeddings = pca_model.transform(query_embeddings)
D, I = faiss_index.search(query_embeddings, 100)
scores_embeddings = D[0]
indices_embeddings = I[0]
indices_embeddings = [int(i) for i in indices_embeddings]
#results = [{"index":i, "NV_score":j, "text": chunks[i]} for i,j in zip(indices_embeddings, scores_embeddings)]
results = [{"index":i, "NV_score":j, "text":ds_paragraphs[i]["paragraph"]} for i,j in zip(indices_embeddings, scores_embeddings)]
out_dict = []
covered = set()
for item in results:
index = item["index"]
item["query"] = query
item["opinion_idx"] = str(ds_paragraphs[index]["idx"])
# only recover one paragraph / opinion
if item["opinion_idx"] in covered:
continue
covered.add(item["opinion_idx"])
if item["opinion_idx"] in metadata:
item["meta_data"] = format_metadata_as_str(metadata[item["opinion_idx"]])
else:
item["meta_data"] = ""
if item["opinion_idx"] in metadata:
item["metadata_reranking"] = metadata[item["opinion_idx"]]
else:
item["metadata_reranking"] = ""
out_dict.append(item)
print (out_dict[:20])
out_dict = rerank_with_chatGPT(query, out_dict)[:NUM_RESULTS]
NUM_RESULTS = 5
model_name = 'nvidia/NV-Embed-v2'
#device = torch.device("cuda")
device = torch.device("mps")
extractive_qa = pipeline("question-answering", model="ai-law-society-lab/extractive-qa-model", tokenizer="FacebookAI/roberta-large", device_map="auto", token=os.getenv('hf_token'))
ds_paragraphs = load_dataset("ai-law-society-lab/federal-caselaw-paragraphs", token=os.getenv('hf_token'))["train"]
ds = load_dataset("ai-law-society-lab/federal-caselaw-embeddings-PCA", token=os.getenv('hf_token'))["train"]
ds = ds.with_format("np")
faiss_index = load_faiss_index(ds["embeddings"])
with open('PCA_model.pkl', 'rb') as f:
pca_model = pickle.load(f)
with open("Federal_caselaw_metadata.json") as f:
metadata = json.load(f)
def load_embeddings_model(model_name = "intfloat/e5-large-v2"):
if "NV" in model_name:
#model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto")
model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True, torch_dtype=torch.float16, device_map="auto")
model.eval()
return model
if "NV" in model_name:
model = load_embeddings_model(model_name=model_name)
examples = ["Can officers always order a passenger out of a car?"]
css = """
.svelte-i3tvor {visibility: hidden}
.row.svelte-hrj4a0.unequal-height {
align-items: stretch !important
}
"""
with gr.Blocks(css=css, theme = gr.themes.Monochrome(primary_hue="pink",)) as demo:
chatbot = gr.Chatbot(height="45vw", autoscroll=False)
query_textbox = gr.Textbox()
#rerank_instruction = gr.Textbox(label="Rerank Instruction Prompt", value="If not otherwise specified in the query, prioritize Supreme Court opinions or opinions from higher courts. More recent, highly cited and published documents should also be weighted higher, unless otherwise specified in the query.")
examples = gr.Examples(examples, query_textbox)
response_json = gr.JSON(visible=False, value=[])
print (response_json)
chatbot.like(mark_like, response_json, response_json)
feedback_textbox = gr.Textbox(label="Additional feedback?", visible=False)
next_button = gr.Button(value="Submit Feedback", visible=False)
query_textbox.submit(show_user_query, [query_textbox, chatbot], [query_textbox, chatbot], queue=False).then(
respond_user_query, chatbot, [chatbot, response_json]).then(
switch_to_reviewing_framework, None, [query_textbox, examples.dataset, feedback_textbox, next_button]
)
# Handle page reset and review save in database
next_button.click(register_review, [chatbot, feedback_textbox, response_json], None).then(
reset_interface, None, [query_textbox, next_button, feedback_textbox, chatbot, response_json, examples.dataset])
# Launch application
demo.launch() |