Upload app_federal.py
Browse files- app_federal.py +3 -8
app_federal.py
CHANGED
@@ -80,7 +80,7 @@ def text_prompt_call(model_to_be_used, system_prompt, user_prompt ):
|
|
80 |
|
81 |
def format_metadata_as_str(metadata):
|
82 |
try:
|
83 |
-
out = metadata["case_name"] + ", " + metadata["court_short_name"] + ", " + metadata["date_filed"]
|
84 |
except:
|
85 |
out = ""
|
86 |
return out
|
@@ -98,15 +98,11 @@ def show_user_query(user_message, history):
|
|
98 |
def format_metadata_for_reranking(metadata, text, idx):
|
99 |
#print (metadata)
|
100 |
#keys = [["case_name", "case name"], ["court_short_name", "court"], ["date_filed", "year"], ["citation_count", "citation count"], ["precedential_status", "precedential status"]]
|
101 |
-
keys = [["court_short_name", "court"], ["date_filed", "year"], ["citation_count", "citation count"], ["precedential_status", "precedential status"]]
|
102 |
out_str = []
|
103 |
out_str = ["<id>" + str(idx) + "</id>"]
|
104 |
for key in keys:
|
105 |
i,j = key
|
106 |
-
print ("i, j", i,j)
|
107 |
-
print (metadata)
|
108 |
-
print ("(metadata[i]", metadata[i])
|
109 |
-
|
110 |
out_str.append("<" + j + ">" + str(metadata[i]) + "</" + j + ">")
|
111 |
out_str.append("<paragraph>" + " ".join(text.split()) + "</paragraph>")
|
112 |
return "\n".join(out_str) + "\n"
|
@@ -241,12 +237,11 @@ def run_dense_retrieval(query):
|
|
241 |
def rerank_with_chatGPT(query, search_results):
|
242 |
search_results_as_dict = {str(i["index"]):i for i in search_results}
|
243 |
|
244 |
-
system_prompt = """You are given a list of search results for a query. Rerank the search results such that the paragraphs answering the query in the most comprehensive way are listed first.
|
245 |
1. prioritize metadata according to the query.
|
246 |
2. If the query doesn't ask for specific metadata, prioritize paragraphs from higher courts (Supreme Court first, Circuit courts next, district courts last)
|
247 |
3. Prioritize paragraphs which have higher citation counts.
|
248 |
4. Prioritize parapgrahs from more recent opinions.
|
249 |
-
5. Prioritize paragraphs which are published compared to unpublished ones.
|
250 |
Return a python list with the ids of the five highest ranking results, nothing else.
|
251 |
<query>""" + query + "</query>\n\n"
|
252 |
user_prompt = []
|
|
|
80 |
|
81 |
def format_metadata_as_str(metadata):
|
82 |
try:
|
83 |
+
out = metadata["case_name"] + ", " + metadata["court_short_name"] + ", " + metadata["date_filed"] #+ ", precedential status " + metadata["precedential_status"]
|
84 |
except:
|
85 |
out = ""
|
86 |
return out
|
|
|
98 |
def format_metadata_for_reranking(metadata, text, idx):
|
99 |
#print (metadata)
|
100 |
#keys = [["case_name", "case name"], ["court_short_name", "court"], ["date_filed", "year"], ["citation_count", "citation count"], ["precedential_status", "precedential status"]]
|
101 |
+
keys = [["court_short_name", "court"], ["date_filed", "year"], ["citation_count", "citation count"]]# , ["precedential_status", "precedential status"]]
|
102 |
out_str = []
|
103 |
out_str = ["<id>" + str(idx) + "</id>"]
|
104 |
for key in keys:
|
105 |
i,j = key
|
|
|
|
|
|
|
|
|
106 |
out_str.append("<" + j + ">" + str(metadata[i]) + "</" + j + ">")
|
107 |
out_str.append("<paragraph>" + " ".join(text.split()) + "</paragraph>")
|
108 |
return "\n".join(out_str) + "\n"
|
|
|
237 |
def rerank_with_chatGPT(query, search_results):
|
238 |
search_results_as_dict = {str(i["index"]):i for i in search_results}
|
239 |
|
240 |
+
system_prompt = """You are given a list of search results for a query. Rerank the search results such that the paragraphs answering the query in the most comprehensive way are listed first. Additionaly, prioritize reranking in the following order:
|
241 |
1. prioritize metadata according to the query.
|
242 |
2. If the query doesn't ask for specific metadata, prioritize paragraphs from higher courts (Supreme Court first, Circuit courts next, district courts last)
|
243 |
3. Prioritize paragraphs which have higher citation counts.
|
244 |
4. Prioritize parapgrahs from more recent opinions.
|
|
|
245 |
Return a python list with the ids of the five highest ranking results, nothing else.
|
246 |
<query>""" + query + "</query>\n\n"
|
247 |
user_prompt = []
|