Datawizard / app.py
aiscientist's picture
Upload 3 files
e9c0cce verified
import pandas as pd
import streamlit.components.v1 as components
import streamlit as st
from ydata_profiling import ProfileReport
from streamlit_pandas_profiling import st_profile_report
from langchain.llms.openai import OpenAI
from langchain_experimental.agents import create_csv_agent
from langchain.agents.agent_types import AgentType
import time
import os
from mitosheet.streamlit.v1 import spreadsheet
from pygwalker.api.streamlit import init_streamlit_comm, get_streamlit_html
# Global variable to store uploaded file
uploaded_file = None
def main():
global uploaded_file
st.sidebar.title("App Options")
option = st.sidebar.selectbox("Choose an option", ["View Instructions", "View Data","Data Profiling","Tableau AI", "CSV Chatbot"])
if option == "View Instructions":
show_instructions()
elif option == "Data Profiling":
data_profiling()
elif option == "CSV Chatbot":
csv_chatbot()
elif option == "View Data":
view_data()
elif option == "Tableau AI":
tableau_ai()
def show_instructions():
st.title("Welcome to the AI TOOL - Made for MDH")
st.write("This tool offers several functionalities to help you analyze and work with your data.")
st.write("Please select an option from the sidebar to proceed:")
st.write("- **View Data:** Upload a CSV file and view its contents.")
st.write("- **Data Profiling:** Upload a CSV file to generate a data profiling report.")
st.write("- **CSV Chatbot:** Interact with a chatbot to get insights from your CSV data.")
st.write("- **Tableau AI:** Upload a CSV file to visualize it using Tableau AI.")
st.write("- **View Instructions:** View these instructions again.")
def data_profiling():
global uploaded_file
st.title("Data Profiling App")
if uploaded_file is None:
uploaded_file = st.file_uploader("Upload CSV file", type=["csv", "xlsx"])
if uploaded_file is None:
st.warning("Please upload a CSV or Excel file.")
st.stop() # Stop execution if no file uploaded
if uploaded_file.name.endswith('.xlsx'):
# Load Excel file into pandas DataFrame
df_excel = pd.read_excel(uploaded_file)
# Save DataFrame as CSV
csv_filename = uploaded_file.name.replace('.xlsx', '.csv')
df_excel.to_csv(csv_filename, index=False)
st.success(f"Excel file converted to CSV: {csv_filename}")
# Set uploaded file to the converted CSV file
uploaded_file = open(csv_filename, 'rb')
df = pd.read_csv(uploaded_file)
st.dataframe(df)
# Generate and display the data profile report
pr = ProfileReport(df, title="Report")
st_profile_report(pr)
def csv_chatbot():
global uploaded_file
st.sidebar.title("OpenAI Settings")
st.title("Personal Assistant")
st.text("A BR CREATION")
st.warning("Also try Google PALM @ [PALMCSV](https://palmcsvbot.streamlit.app/)")
st.image("chatbot.jpg", caption="Chatbot", width=178)
if uploaded_file is None:
uploaded_file = st.file_uploader("Upload CSV file", type=["csv", "xlsx"])
if uploaded_file is None:
st.warning("Please upload a CSV or Excel file.")
st.stop() # Stop execution if no file uploaded
openai_api_key = st.text_input("Enter your OpenAI API Key", type="password")
if not openai_api_key:
st.warning("You should have an OpenAI API key to continue. Get one at [OpenAI API Keys](https://platform.openai.com/api-keys)")
st.stop()
os.environ['OPENAI_API_KEY'] = openai_api_key
llm = OpenAI(temperature=0)
agent = create_csv_agent(
llm,
uploaded_file,
verbose=False,
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
)
predefined_questions = ["How many rows are there in the dataset?", "Explain the dataset."]
selected_question = st.selectbox("Select a question", ["Select a question"] + predefined_questions)
custom_question = st.text_input("Or ask a custom question")
if st.button("Ask"):
if selected_question != "Select a question":
query = selected_question
elif custom_question.strip() != "":
query = custom_question.strip()
else:
st.warning("Please select a predefined question or ask a custom question.")
return
start = time.time()
answer = agent.run(query)
end = time.time()
st.write(answer)
st.write(f"Answer (took {round(end - start, 2)} s.)")
def view_data():
global uploaded_file
st.title("Data Viewer Portal")
if uploaded_file is None:
uploaded_file = st.file_uploader("Upload CSV file", type=["csv", "xlsx"])
if uploaded_file is None:
st.warning("Please upload a CSV or Excel file.")
st.stop() # Stop execution if no file uploaded
if uploaded_file.name.endswith('.xlsx'):
# Load Excel file into pandas DataFrame
df_excel = pd.read_excel(uploaded_file)
# Save DataFrame as CSV
csv_filename = uploaded_file.name.replace('.xlsx', '.csv')
df_excel.to_csv(csv_filename, index=False)
st.success(f"Excel file converted to CSV: {csv_filename}")
# Set uploaded file to the converted CSV file
uploaded_file = open(csv_filename, 'rb')
df = pd.read_csv(uploaded_file)
# Convert the dataframe to a list of dictionaries
dataframe = df.to_dict(orient="records")
# Display the dataframe in a Mito spreadsheet
final_dfs, code = spreadsheet(dataframe)
def tableau_ai():
global uploaded_file
st.title("Virtual Tableau AI Tool")
init_streamlit_comm()
# Function to get PygWalker HTML
@st.cache_data
def get_pyg_html(df: pd.DataFrame) -> str:
html = get_streamlit_html(df, use_kernel_calc=True, debug=False)
return html
# Function to get user uploaded DataFrame
def get_user_uploaded_data():
if uploaded_file is not None:
return pd.read_csv(uploaded_file)
return None
if uploaded_file is None:
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv", "xlsx"])
if uploaded_file is None:
st.warning("Please upload a CSV or Excel file.")
st.stop() # Stop execution if no file uploaded
if uploaded_file.name.endswith('.xlsx'):
# Load Excel file into pandas DataFrame
df_excel = pd.read_excel(uploaded_file)
# Save DataFrame as CSV
csv_filename = uploaded_file.name.replace('.xlsx', '.csv')
df_excel.to_csv(csv_filename, index=False)
st.success(f"Excel file converted to CSV: {csv_filename}")
# Set uploaded file to the converted CSV file
uploaded_file = open(csv_filename, 'rb')
df = get_user_uploaded_data()
if df is not None:
components.html(get_pyg_html(df), width=1300, height=1000, scrolling=True)
else:
st.write("Please upload a CSV file to proceed.")
if __name__ == "__main__":
main()