Gradio / app.py
ajalisatgi's picture
Update app.py
35a96c0 verified
raw
history blame
5.97 kB
import gradio as gr
import openai
import os
import nltk
import shutil
import numpy as np
import torch
from datasets import load_dataset
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.schema import Document
from sentence_transformers import SentenceTransformer
from sklearn.metrics import mean_squared_error, roc_auc_score
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# βœ… Load Pretrained Model
model_name = "bert-base-uncased"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
embedding_model.client.to(device)
# βœ… Set OpenAI API Key (Replace with your own)
openai.api_key = os.getenv("OPENAI_API_KEY")
# βœ… Download NLTK Dependencies
nltk.download('punkt')
# βœ… Load RunGalileo Datasets
ragbench = {}
for dataset in ['covidqa', 'cuad', 'delucionqa', 'emanual', 'expertqa', 'finqa', 'hagrid', 'hotpotqa', 'msmarco', 'pubmedqa', 'tatqa', 'techqa']:
ragbench[dataset] = load_dataset("rungalileo/ragbench", dataset)
print("Datasets Loaded βœ…")
# βœ… Function to Chunk Documents
def chunk_documents_semantic(documents, max_chunk_size=500):
chunks = []
for doc in documents:
sentences = nltk.sent_tokenize(doc)
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) <= max_chunk_size:
current_chunk += sentence + " "
else:
chunks.append(current_chunk.strip())
current_chunk = sentence + " "
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
# βœ… Chunk the Entire Dataset
chunked_ragbench = {}
for dataset_name in ragbench.keys():
for split in ragbench[dataset_name].keys():
original_documents_full = ragbench[dataset_name][split]['documents']
chunked_documents_full = chunk_documents_semantic(original_documents_full)
chunked_ragbench[split] = chunked_documents_full
print("Chunking Completed βœ…")
# βœ… Setup ChromaDB
persist_directory = "chroma_db_directory"
if os.path.exists(persist_directory):
shutil.rmtree(persist_directory)
documents = [Document(page_content=chunk) for chunk in chunked_documents_full]
vectordb = Chroma.from_documents(
documents=documents,
embedding=embedding_model,
persist_directory=persist_directory
)
vectordb.persist()
# βœ… Retrieve Documents
def retrieve_documents(question, k=5):
docs = vectordb.similarity_search(question, k=k)
if not docs:
return ["⚠️ No relevant documents found. Try a different query."]
return [doc.page_content for doc in docs]
# βœ… Generate AI Response
def generate_response(question, context):
if not context or "No relevant documents found." in context:
return "No relevant context available. Try a different query."
full_prompt = f"Context: {context}\n\nQuestion: {question}"
try:
client = openai.OpenAI()
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an AI assistant that answers user queries based on the given context."},
{"role": "user", "content": full_prompt}
],
max_tokens=300,
temperature=0.7
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"Error generating response: {str(e)}"
# βœ… Compute Context Relevance, Utilization, Completeness, Adherence
def compute_cosine_similarity(text1, text2):
vectorizer = TfidfVectorizer()
vectors = vectorizer.fit_transform([text1, text2])
return cosine_similarity(vectors[0], vectors[1])[0][0]
def context_relevance(question, relevant_documents):
combined_docs = " ".join(relevant_documents)
return compute_cosine_similarity(question, combined_docs)
def context_utilization(response, relevant_documents):
combined_docs = " ".join(relevant_documents)
return compute_cosine_similarity(response, combined_docs)
def completeness(response, ground_truth_answer):
return compute_cosine_similarity(response, ground_truth_answer)
def adherence(response, relevant_documents):
combined_docs = " ".join(relevant_documents)
response_tokens = set(response.split())
relevant_tokens = set(combined_docs.split())
supported_tokens = response_tokens.intersection(relevant_tokens)
return len(supported_tokens) / len(response_tokens)
def compute_rmse(predicted_values, ground_truth_values):
return np.sqrt(mean_squared_error(ground_truth_values, predicted_values))
# βœ… Full RAG Pipeline
def rag_pipeline(question):
retrieved_docs = retrieve_documents(question, k=5)
context = " ".join(retrieved_docs)
response = generate_response(question, context)
# Compute Evaluation Metrics
ground_truth_answer = "Sample ground truth answer from dataset"
predicted_metrics = {
"context_relevance": context_relevance(question, retrieved_docs),
"context_utilization": context_utilization(response, retrieved_docs),
"completeness": completeness(response, ground_truth_answer),
"adherence": adherence(response, retrieved_docs)
}
return response, "\n\n".join(retrieved_docs), predicted_metrics
# βœ… Gradio UI Interface
iface = gr.Interface(
fn=rag_pipeline,
inputs=gr.Textbox(label="Enter your question"),
outputs=[
gr.Textbox(label="Generated Response"),
gr.Textbox(label="Retrieved Documents"),
gr.JSON(label="Evaluation Metrics")
],
title="RAG-Based QA System for RunGalileo",
description="Enter a question and retrieve relevant documents with AI-generated response & evaluation metrics."
)
# βœ… Launch the Gradio App
if __name__ == "__main__":
iface.launch()