Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,70 @@
|
|
1 |
import gradio as gr
|
2 |
import openai
|
|
|
3 |
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
from langchain_community.vectorstores import Chroma
|
|
|
5 |
|
6 |
-
#
|
7 |
-
openai.api_key = "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"
|
8 |
-
|
9 |
-
# Load embedding model
|
10 |
model_name = "intfloat/e5-small"
|
11 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
12 |
|
13 |
-
#
|
|
|
|
|
|
|
14 |
persist_directory = "./docs/chroma/"
|
15 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_model)
|
16 |
|
17 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def rag_pipeline(question):
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
response = openai migrate.create(
|
26 |
-
model="gpt-4",
|
27 |
-
messages=[{"role": "user", "content": full_prompt}],
|
28 |
-
max_tokens=300,
|
29 |
-
temperature=0.7
|
30 |
-
)
|
31 |
-
|
32 |
-
return response['choices'][0]['message']['content'].strip(), retrieved_docs
|
33 |
-
|
34 |
-
# Gradio UI
|
35 |
iface = gr.Interface(
|
36 |
fn=rag_pipeline,
|
37 |
inputs=gr.Textbox(label="Enter your question"),
|
38 |
-
outputs=[
|
39 |
-
|
|
|
|
|
|
|
40 |
description="Enter a question and retrieve relevant documents with AI-generated response."
|
41 |
)
|
42 |
|
43 |
-
# Launch Gradio
|
44 |
if __name__ == "__main__":
|
45 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import openai
|
3 |
+
import os
|
4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
+
from langchain.schema import Document
|
7 |
|
8 |
+
# β
Load the Sentence Transformer Embedding Model
|
|
|
|
|
|
|
9 |
model_name = "intfloat/e5-small"
|
10 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
11 |
|
12 |
+
# β
Set up OpenAI API Key (Replace with your own API key)
|
13 |
+
openai.api_key = os.getenv("OPENAI_API_KEY") # Add in Hugging Face Secrets
|
14 |
+
|
15 |
+
# β
Load ChromaDB with RunGalileo Dataset
|
16 |
persist_directory = "./docs/chroma/"
|
17 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_model)
|
18 |
|
19 |
+
# β
Function to Retrieve Top-K Relevant Documents
|
20 |
+
def retrieve_documents(question, k=5):
|
21 |
+
"""Retrieve top K relevant documents from ChromaDB"""
|
22 |
+
docs = vectordb.similarity_search(question, k=k)
|
23 |
+
if not docs:
|
24 |
+
return ["No relevant documents found."]
|
25 |
+
return [doc.page_content for doc in docs]
|
26 |
+
|
27 |
+
# β
Function to Generate AI Response
|
28 |
+
def generate_response(question, context):
|
29 |
+
"""Generate AI response using OpenAI GPT-4"""
|
30 |
+
if not context or "No relevant documents found." in context:
|
31 |
+
return "No relevant context available. Try a different query."
|
32 |
+
|
33 |
+
full_prompt = f"Context: {context}\n\nQuestion: {question}"
|
34 |
+
|
35 |
+
try:
|
36 |
+
response = openai.ChatCompletion.create(
|
37 |
+
model="gpt-4",
|
38 |
+
messages=[
|
39 |
+
{"role": "system", "content": "You are an AI assistant that answers user queries based on the given context."},
|
40 |
+
{"role": "user", "content": full_prompt}
|
41 |
+
],
|
42 |
+
max_tokens=300,
|
43 |
+
temperature=0.7
|
44 |
+
)
|
45 |
+
return response["choices"][0]["message"]["content"].strip()
|
46 |
+
except Exception as e:
|
47 |
+
return f"Error generating response: {str(e)}"
|
48 |
+
|
49 |
+
# β
Full RAG Pipeline
|
50 |
def rag_pipeline(question):
|
51 |
+
retrieved_docs = retrieve_documents(question, k=5)
|
52 |
+
context = " ".join(retrieved_docs)
|
53 |
+
response = generate_response(question, context)
|
54 |
+
return response, "\n\n".join(retrieved_docs)
|
55 |
+
|
56 |
+
# β
Gradio UI Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
iface = gr.Interface(
|
58 |
fn=rag_pipeline,
|
59 |
inputs=gr.Textbox(label="Enter your question"),
|
60 |
+
outputs=[
|
61 |
+
gr.Textbox(label="Generated Response"),
|
62 |
+
gr.Textbox(label="Retrieved Documents")
|
63 |
+
],
|
64 |
+
title="RAG-Based Question Answering System for RunGalileo",
|
65 |
description="Enter a question and retrieve relevant documents with AI-generated response."
|
66 |
)
|
67 |
|
68 |
+
# β
Launch the Gradio App
|
69 |
if __name__ == "__main__":
|
70 |
iface.launch()
|