Spaces:
Running
Running
Ananya Uppal
commited on
Commit
·
84d12f2
1
Parent(s):
51ed8c6
pushing app.py file
Browse files
app.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""VTON_GarmentMasker.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1Y22abu3jZQ5qCKP7DTR6kYvXdQbHnJCu
|
8 |
+
|
9 |
+
Using YOLO Clothing Classification Model
|
10 |
+
"""
|
11 |
+
|
12 |
+
# !pip install gradio
|
13 |
+
# !pip install ultralytics
|
14 |
+
# !pip install segment-anything
|
15 |
+
|
16 |
+
# !wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import numpy as np
|
20 |
+
import cv2
|
21 |
+
from PIL import Image
|
22 |
+
from torchvision import transforms
|
23 |
+
from ultralytics import YOLO
|
24 |
+
from segment_anything import SamPredictor, sam_model_registry
|
25 |
+
from transformers import YolosForObjectDetection, YolosImageProcessor
|
26 |
+
import gradio as gr
|
27 |
+
import os
|
28 |
+
import urllib.request
|
29 |
+
|
30 |
+
class GarmentMaskingPipeline:
|
31 |
+
def __init__(self):
|
32 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
+
print(f"Using device: {self.device}")
|
34 |
+
self.yolo_model, self.sam_predictor, self.classification_model = self.load_models()
|
35 |
+
|
36 |
+
self.clothing_to_body_parts = {
|
37 |
+
'shirt': ['torso', 'arms'],
|
38 |
+
't-shirt': ['torso', 'upper_arms'],
|
39 |
+
'blouse': ['torso', 'arms'],
|
40 |
+
'dress': ['torso', 'legs'],
|
41 |
+
'skirt': ['lower_torso', 'legs'],
|
42 |
+
'pants': ['legs'],
|
43 |
+
'shorts': ['upper_legs'],
|
44 |
+
'jacket': ['torso', 'arms'],
|
45 |
+
'coat': ['torso', 'arms']
|
46 |
+
}
|
47 |
+
|
48 |
+
self.body_parts_positions = {
|
49 |
+
'face': (0.0, 0.2),
|
50 |
+
'torso': (0.2, 0.5),
|
51 |
+
'arms': (0.2, 0.5),
|
52 |
+
'upper_arms': (0.2, 0.35),
|
53 |
+
'lower_torso': (0.4, 0.6),
|
54 |
+
'legs': (0.5, 0.9),
|
55 |
+
'upper_legs': (0.5, 0.7),
|
56 |
+
'feet': (0.9, 1.0)
|
57 |
+
}
|
58 |
+
|
59 |
+
def load_models(self):
|
60 |
+
print("Loading models...")
|
61 |
+
# Download models if they don't exist
|
62 |
+
self.download_models()
|
63 |
+
|
64 |
+
# Load YOLO model
|
65 |
+
yolo_model = YOLO('yolov8n.pt')
|
66 |
+
|
67 |
+
# Load SAM model
|
68 |
+
sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth")
|
69 |
+
sam.to(self.device)
|
70 |
+
predictor = SamPredictor(sam)
|
71 |
+
|
72 |
+
# Load YOLOS-Fashionpedia model for clothing classification
|
73 |
+
print("Loading YOLOS-Fashionpedia model...")
|
74 |
+
model_name = "valentinafeve/yolos-fashionpedia"
|
75 |
+
processor = YolosImageProcessor.from_pretrained(model_name)
|
76 |
+
classification_model = YolosForObjectDetection.from_pretrained(model_name)
|
77 |
+
classification_model.to(self.device)
|
78 |
+
classification_model.eval()
|
79 |
+
|
80 |
+
print("Models loaded successfully!")
|
81 |
+
return yolo_model, predictor, classification_model
|
82 |
+
|
83 |
+
def download_models(self):
|
84 |
+
"""Download required model files if they don't exist"""
|
85 |
+
models = {
|
86 |
+
"yolov8n.pt": "https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt",
|
87 |
+
"sam_vit_h_4b8939.pth": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
|
88 |
+
}
|
89 |
+
|
90 |
+
for filename, url in models.items():
|
91 |
+
if not os.path.exists(filename):
|
92 |
+
print(f"Downloading {filename}...")
|
93 |
+
urllib.request.urlretrieve(url, filename)
|
94 |
+
print(f"Downloaded {filename}")
|
95 |
+
else:
|
96 |
+
print(f"{filename} already exists")
|
97 |
+
|
98 |
+
# The YOLOS-Fashionpedia model will be downloaded automatically by transformers
|
99 |
+
|
100 |
+
def classify_clothing(self, clothing_image):
|
101 |
+
if not isinstance(clothing_image, Image.Image):
|
102 |
+
clothing_image = Image.fromarray(clothing_image)
|
103 |
+
|
104 |
+
# Process image with YOLOS processor
|
105 |
+
processor = YolosImageProcessor.from_pretrained("valentinafeve/yolos-fashionpedia")
|
106 |
+
inputs = processor(images=clothing_image, return_tensors="pt").to(self.device)
|
107 |
+
|
108 |
+
# Run inference
|
109 |
+
with torch.no_grad():
|
110 |
+
outputs = self.classification_model(**inputs)
|
111 |
+
|
112 |
+
# Process results
|
113 |
+
target_sizes = torch.tensor([clothing_image.size[::-1]]).to(self.device)
|
114 |
+
results = processor.post_process_object_detection(
|
115 |
+
outputs, target_sizes=target_sizes, threshold=0.1
|
116 |
+
)[0]
|
117 |
+
|
118 |
+
# Extract detected labels and confidence scores
|
119 |
+
labels = results["labels"]
|
120 |
+
scores = results["scores"]
|
121 |
+
|
122 |
+
# Get class names from model config
|
123 |
+
id2label = self.classification_model.config.id2label
|
124 |
+
|
125 |
+
# Define Fashionpedia to our category mapping
|
126 |
+
fashionpedia_to_clothing = {
|
127 |
+
'shirt': 'shirt',
|
128 |
+
'blouse': 'shirt',
|
129 |
+
'top': 't-shirt',
|
130 |
+
't-shirt': 't-shirt',
|
131 |
+
'sweater': 'shirt',
|
132 |
+
'jacket': 'jacket',
|
133 |
+
'cardigan': 'jacket',
|
134 |
+
'coat': 'coat',
|
135 |
+
'jumper': 'shirt',
|
136 |
+
'dress': 'dress',
|
137 |
+
'skirt': 'skirt',
|
138 |
+
'shorts': 'shorts',
|
139 |
+
'pants': 'pants',
|
140 |
+
'jeans': 'pants',
|
141 |
+
'leggings': 'pants',
|
142 |
+
'jumpsuit': 'dress'
|
143 |
+
}
|
144 |
+
|
145 |
+
# Find the garment with highest confidence
|
146 |
+
if len(labels) > 0:
|
147 |
+
detections = [(id2label[label.item()].lower(), score.item())
|
148 |
+
for label, score in zip(labels, scores)]
|
149 |
+
detections.sort(key=lambda x: x[1], reverse=True)
|
150 |
+
|
151 |
+
for label, score in detections:
|
152 |
+
# Look for clothing keywords in the label
|
153 |
+
for keyword, category in fashionpedia_to_clothing.items():
|
154 |
+
if keyword in label:
|
155 |
+
return category
|
156 |
+
|
157 |
+
# If no mapping found, use the first detection as is
|
158 |
+
return 't-shirt'
|
159 |
+
|
160 |
+
# Default to t-shirt if nothing detected
|
161 |
+
return 't-shirt'
|
162 |
+
|
163 |
+
def create_garment_mask(self, person_image, garment_image):
|
164 |
+
clothing_type = self.classify_clothing(garment_image)
|
165 |
+
parts_to_mask = self.clothing_to_body_parts.get(clothing_type, [])
|
166 |
+
|
167 |
+
results = self.yolo_model(person_image, classes=[0])
|
168 |
+
mask = np.zeros(person_image.shape[:2], dtype=np.uint8)
|
169 |
+
|
170 |
+
if results and len(results[0].boxes.data) > 0:
|
171 |
+
person_boxes = results[0].boxes.data
|
172 |
+
person_areas = [(box[2] - box[0]) * (box[3] - box[1]) for box in person_boxes]
|
173 |
+
largest_person_index = np.argmax(person_areas)
|
174 |
+
person_box = person_boxes[largest_person_index][:4].cpu().numpy().astype(int)
|
175 |
+
|
176 |
+
self.sam_predictor.set_image(person_image)
|
177 |
+
masks, _, _ = self.sam_predictor.predict(box=person_box, multimask_output=False)
|
178 |
+
person_mask = masks[0].astype(np.uint8)
|
179 |
+
|
180 |
+
h, w = person_mask.shape
|
181 |
+
for part in parts_to_mask:
|
182 |
+
if part in self.body_parts_positions:
|
183 |
+
top_ratio, bottom_ratio = self.body_parts_positions[part]
|
184 |
+
top_px, bottom_px = int(h * top_ratio), int(h * bottom_ratio)
|
185 |
+
|
186 |
+
part_mask = np.zeros_like(person_mask)
|
187 |
+
part_mask[top_px:bottom_px, :] = 1
|
188 |
+
part_mask = np.logical_and(part_mask, person_mask).astype(np.uint8)
|
189 |
+
|
190 |
+
mask = np.logical_or(mask, part_mask).astype(np.uint8)
|
191 |
+
|
192 |
+
# Remove face from the mask
|
193 |
+
face_top_px, face_bottom_px = int(h * 0.0), int(h * 0.2)
|
194 |
+
face_mask = np.zeros_like(person_mask)
|
195 |
+
face_mask[face_top_px:face_bottom_px, :] = 1
|
196 |
+
face_mask = np.logical_and(face_mask, person_mask).astype(np.uint8)
|
197 |
+
mask = np.logical_and(mask, np.logical_not(face_mask)).astype(np.uint8)
|
198 |
+
|
199 |
+
# Remove feet from the mask
|
200 |
+
feet_top_px, feet_bottom_px = int(h * 0.9), int(h * 1.0)
|
201 |
+
feet_mask = np.zeros_like(person_mask)
|
202 |
+
feet_mask[feet_top_px:feet_bottom_px, :] = 1
|
203 |
+
feet_mask = np.logical_and(feet_mask, person_mask).astype(np.uint8)
|
204 |
+
mask = np.logical_and(mask, np.logical_not(feet_mask)).astype(np.uint8)
|
205 |
+
|
206 |
+
return mask * 255
|
207 |
+
|
208 |
+
def process(self, person_image_pil, garment_image_pil, mask_color_hex="#00FF00", opacity=0.5):
|
209 |
+
"""Process the input images and return the masked result"""
|
210 |
+
# Convert PIL to numpy array
|
211 |
+
person_image = np.array(person_image_pil)
|
212 |
+
garment_image = np.array(garment_image_pil)
|
213 |
+
|
214 |
+
# Convert to RGB if needed
|
215 |
+
if person_image.shape[2] == 4: # RGBA
|
216 |
+
person_image = person_image[:, :, :3]
|
217 |
+
if garment_image.shape[2] == 4: # RGBA
|
218 |
+
garment_image = garment_image[:, :, :3]
|
219 |
+
|
220 |
+
# Create garment mask
|
221 |
+
garment_mask = self.create_garment_mask(person_image, garment_image)
|
222 |
+
|
223 |
+
# Convert hex color to RGB
|
224 |
+
r = int(mask_color_hex[1:3], 16)
|
225 |
+
g = int(mask_color_hex[3:5], 16)
|
226 |
+
b = int(mask_color_hex[5:7], 16)
|
227 |
+
color = (r, g, b)
|
228 |
+
|
229 |
+
# Create a colored mask
|
230 |
+
colored_mask = np.zeros_like(person_image)
|
231 |
+
for i in range(3):
|
232 |
+
colored_mask[:, :, i] = garment_mask * (color[i] / 255.0)
|
233 |
+
|
234 |
+
# Create binary mask for visualization
|
235 |
+
binary_mask = np.stack([garment_mask, garment_mask, garment_mask], axis=2)
|
236 |
+
|
237 |
+
# Overlay mask on original image
|
238 |
+
mask_3d = garment_mask[:, :, np.newaxis] / 255.0
|
239 |
+
overlay = person_image * (1 - opacity * mask_3d) + colored_mask * opacity
|
240 |
+
overlay = overlay.astype(np.uint8)
|
241 |
+
|
242 |
+
# Get classification result
|
243 |
+
clothing_type = self.classify_clothing(garment_image)
|
244 |
+
parts_to_mask = self.clothing_to_body_parts.get(clothing_type, [])
|
245 |
+
|
246 |
+
return overlay, binary_mask, f"Detected garment: {clothing_type}\nBody parts to mask: {', '.join(parts_to_mask)}"
|
247 |
+
|
248 |
+
def process_images(person_img, garment_img, mask_color, opacity):
|
249 |
+
"""Gradio processing function"""
|
250 |
+
try:
|
251 |
+
pipeline = GarmentMaskingPipeline()
|
252 |
+
result = pipeline.process(person_img, garment_img, mask_color, opacity)
|
253 |
+
return result
|
254 |
+
except Exception as e:
|
255 |
+
import traceback
|
256 |
+
error_msg = f"Error processing images: {str(e)}\n{traceback.format_exc()}"
|
257 |
+
print(error_msg)
|
258 |
+
return None, None, error_msg
|
259 |
+
|
260 |
+
def create_gradio_interface():
|
261 |
+
"""Create and launch the Gradio interface"""
|
262 |
+
with gr.Blocks(title="VTON SAM Garment Masking Pipeline") as interface:
|
263 |
+
gr.Markdown("""
|
264 |
+
# Virtual Try-On Garment Masking Pipeline with SAM and YOLOS-Fashionpedia
|
265 |
+
|
266 |
+
Upload a person image and a garment image to generate a mask for a virtual try-on application.
|
267 |
+
The system will:
|
268 |
+
1. Detect the person using YOLO
|
269 |
+
2. Create a high-quality segmentation using SAM (Segment Anything Model)
|
270 |
+
3. Classify the garment type using YOLOS-Fashionpedia
|
271 |
+
4. Generate a mask of the area where the garment should be placed
|
272 |
+
|
273 |
+
**Note**: This system uses state-of-the-art AI segmentation and fashion detection models for accurate results.
|
274 |
+
""")
|
275 |
+
|
276 |
+
with gr.Row():
|
277 |
+
with gr.Column():
|
278 |
+
person_input = gr.Image(label="Person Image (Image A)", type="pil")
|
279 |
+
garment_input = gr.Image(label="Garment Image (Image B)", type="pil")
|
280 |
+
|
281 |
+
with gr.Row():
|
282 |
+
mask_color = gr.ColorPicker(label="Mask Color", value="#00FF00")
|
283 |
+
opacity = gr.Slider(label="Mask Opacity", minimum=0.1, maximum=0.9, value=0.5, step=0.1)
|
284 |
+
|
285 |
+
submit_btn = gr.Button("Generate Mask")
|
286 |
+
|
287 |
+
with gr.Column():
|
288 |
+
masked_output = gr.Image(label="Person with Masked Region")
|
289 |
+
mask_output = gr.Image(label="Standalone Mask")
|
290 |
+
result_text = gr.Textbox(label="Detection Results", lines=3)
|
291 |
+
|
292 |
+
# Set up the processing flow
|
293 |
+
submit_btn.click(
|
294 |
+
fn=process_images,
|
295 |
+
inputs=[person_input, garment_input, mask_color, opacity],
|
296 |
+
outputs=[masked_output, mask_output, result_text]
|
297 |
+
)
|
298 |
+
|
299 |
+
gr.Markdown("""
|
300 |
+
## How It Works
|
301 |
+
|
302 |
+
1. **Person Detection**: Uses YOLO to detect and locate the person in the image
|
303 |
+
2. **Segmentation**: Uses SAM (Segment Anything Model) to create a high-quality segmentation mask
|
304 |
+
3. **Garment Classification**: Uses YOLOS-Fashionpedia to identify the garment type with fashion-specific detection
|
305 |
+
4. **Mask Generation**: Creates a mask based on the garment type and body part mapping
|
306 |
+
|
307 |
+
## Supported Garment Types
|
308 |
+
|
309 |
+
- Shirts, Blouses, Tops, and T-shirts
|
310 |
+
- Sweaters and Cardigans
|
311 |
+
- Dresses and Jumpsuits
|
312 |
+
- Skirts
|
313 |
+
- Pants, Jeans, and Leggings
|
314 |
+
- Shorts
|
315 |
+
-
|
316 |
+
Jackets and Coats
|
317 |
+
|
318 |
+
""")
|
319 |
+
|
320 |
+
return interface
|
321 |
+
|
322 |
+
if __name__ == "__main__":
|
323 |
+
# Create and launch the Gradio interface
|
324 |
+
interface = create_gradio_interface()
|
325 |
+
interface.launch(debug=True,share=True)
|