reproduce / evaluations /repo_evaluations.py
attilasimko's picture
new logging style
69cbe77
raw
history blame
6.3 kB
import pandas as pd
import os
from evaluations import documentation, requirements, training, validating, license, weights
from evaluations.utils import *
import zipfile
import os
import numpy as np
from huggingface_hub import InferenceClient
API_URL = "https://api-inference.huggingface.co/models/openlm-research/open_llama_3b_v2"
headers = {"Authorization": "Bearer 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", "x-wait-for-model": "true"}
client = InferenceClient(
"meta-llama/Llama-3.1-8B-Instruct",
token="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",
)
def evaluate(llm, verbose, repo_url, title=None, year=None):
repository_zip_name = "data/repo.zip"
token = os.getenv("githubToken")
# token = userdata.get('githubToken')
if (llm):
init_llm(verbose)
else:
log(verbose, "LOG", "No LLM will be used for the evaluation.")
results = { "pred_live": "Yes", "pred_dependencies": None, "pred_training": None, "pred_evaluation": None, "pred_weights": None, "pred_readme": None, "pred_license": None, "pred_stars": None, "pred_citations": None, "pred_valid": False}
try:
if (get_api_link(repo_url) != ""):
results["pred_valid"] = True
else:
return results
username, repo_name = decompose_url(repo_url)
log(verbose, "LOG", f"Fetching github repository: https://github.com/{username}/{repo_name}")
fetch_repo(verbose, repo_url, repository_zip_name, token)
if ((title != None) & (year != None) & (title != "") & (year != "")):
res = fetch_openalex(verbose, title, year)
if (res != None):
res = res["results"]
if (len(res) > 0):
res = res[0]
results["pred_citations"] = res["cited_by_count"]
if (not(os.path.exists(repository_zip_name))):
results["pred_live"] = "No"
return results
zip = zipfile.ZipFile(repository_zip_name)
readme = fetch_readme(zip)
results["pred_stars"] = fetch_repo_stars(verbose, repo_url, token)
if (len(zip.namelist()) <= 2):
log(verbose, "LOG", "Empty repository")
results["pred_live"] = "No"
results["pred_training"] = "No"
results["pred_evaluation"] = "No"
results["pred_weights"] = "No"
results["pred_packages"] = "No"
else:
results["pred_dependencies"] = requirements.evaluate(verbose, llm, zip, readme)
results["pred_training"] = training.evaluate(verbose, llm, zip, readme)
results["pred_evaluation"] = validating.evaluate(verbose, llm, zip, readme)
results["pred_weights"] = weights.evaluate(verbose, llm, zip, readme)
results["pred_readme"] = documentation.evaluate(verbose, llm, zip, readme)
results["pred_codetocomment"] = documentation.get_code_to_comment_ratio(zip)
results["pred_license"] = license.evaluate(verbose, llm, zip, readme)
return results
except Exception as e:
log(verbose, "ERROR", "Evaluating repository failed: " + str(e))
results["pred_live"] = "No"
return results
def full_evaluation():
paper_dump = pd.read_csv("data/dump.csv", sep="\t")
full_results = []
for idx, row in paper_dump.iterrows():
if (pd.isna(row["url"]) | (row["url"] == "")):
continue
print(str(int(100 * idx / paper_dump["title"].count())) + "% done")
result = evaluate(None, False, row["url"], row["title"], row["year"])
for column in result.keys():
row[column] = result[column]
full_results.append(row)
return pd.DataFrame(full_results)
def midl_evaluations():
compare_to_gt = True
paper_dump = pd.read_csv("data/dump.csv", sep="\t")
verbose = 1
eval_readme = []
eval_training = []
eval_evaluating = []
eval_licensing = []
eval_weights = []
eval_dependencies = []
full_results = []
for idx, row in paper_dump.iterrows():
if (row["venue"] != "MIDL"):
continue
if (row["venue"] == 2024):
continue
if (pd.isna(row["url"]) | (row["url"] == "")):
continue
print(f"\nEvaluating {idx+1} out of {len(paper_dump.index)} papers...")
print(f'Paper title - "{row["title"]}" ({row["year"]})')
print(f'Repository link - {row["url"]}')
result = evaluate(None, verbose, row["url"])
for column in result.keys():
row[column] = result[column]
full_results.append(row)
if (compare_to_gt):
print("\nSummary:")
if ((~pd.isna(row["dependencies"])) & (row["pred_dependencies"] is not None)):
eval_dependencies.append(row["pred_dependencies"] == row["dependencies"])
print(f"Dependencies acc. - {row['pred_dependencies']} (GT:{row['dependencies']}) / {int(100 * np.mean(eval_dependencies))}%")
if ((~pd.isna(row["training"])) & (row["pred_dependencies"] is not None)):
eval_training.append(row["training"] == row["pred_training"])
print(f"Training acc. -{row['pred_training']} (GT:{row['training']}) / {int(100 * np.mean(eval_training))}%")
if ((~pd.isna(row["evaluation"])) & (row["pred_dependencies"] is not None)):
eval_evaluating.append(row["evaluation"] == row["pred_evaluation"])
print(f"Evaluating acc. - {row['pred_evaluation']} (GT:{row['evaluation']}) / {int(100 * np.mean(eval_evaluating))}%")
if ((~pd.isna(row["weights"])) & (row["pred_dependencies"] is not None)):
eval_weights.append(row["weights"] == row["pred_weights"])
print(f"Weights acc. - {row['pred_weights']} (GT:{row['weights']}) / {int(100 * np.mean(eval_weights))}%")
if ((~pd.isna(row["readme"])) & (row["pred_dependencies"] is not None)):
eval_readme.append(row["readme"] == row["pred_readme"])
print(f"README acc. - {row['pred_readme']} (GT:{row['readme']}) / {int(100 * np.mean(eval_readme))}%")
if ((~pd.isna(row["license"])) & (row["pred_dependencies"] is not None)):
eval_licensing.append(("No" if row["license"] == "No" else "Yes") == row["pred_license"])
print(f"LICENSE acc. - {row['pred_license']} (GT:{row['license']}) / {int(100 * np.mean(eval_licensing))}%")
return pd.DataFrame(full_results)