import pandas as pd import os from evaluations import documentation, requirements, training, validating, license, weights from evaluations.utils import * import zipfile import os import numpy as np from huggingface_hub import InferenceClient API_URL = "https://api-inference.huggingface.co/models/openlm-research/open_llama_3b_v2" headers = {"Authorization": "Bearer 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", "x-wait-for-model": "true"} client = InferenceClient( "meta-llama/Llama-3.1-8B-Instruct", token="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", ) def evaluate(llm, verbose, repo_url, title=None, year=None): repository_zip_name = "data/repo.zip" token = os.getenv("githubToken") # token = userdata.get('githubToken') if (llm): init_llm(verbose) else: log(verbose, "LOG", "No LLM will be used for the evaluation.") results = { "pred_live": "Yes", "pred_dependencies": None, "pred_training": None, "pred_evaluation": None, "pred_weights": None, "pred_readme": None, "pred_license": None, "pred_stars": None, "pred_citations": None, "pred_valid": False} try: if (get_api_link(repo_url) != ""): results["pred_valid"] = True else: return results username, repo_name = decompose_url(repo_url) log(verbose, "LOG", f"Fetching github repository: https://github.com/{username}/{repo_name}") fetch_repo(verbose, repo_url, repository_zip_name, token) if ((title != None) & (year != None) & (title != "") & (year != "")): res = fetch_openalex(verbose, title, year) if (res != None): res = res["results"] if (len(res) > 0): res = res[0] results["pred_citations"] = res["cited_by_count"] if (not(os.path.exists(repository_zip_name))): results["pred_live"] = "No" return results zip = zipfile.ZipFile(repository_zip_name) readme = fetch_readme(zip) results["pred_stars"] = fetch_repo_stars(verbose, repo_url, token) if (len(zip.namelist()) <= 2): log(verbose, "LOG", "Empty repository") results["pred_live"] = "No" results["pred_training"] = "No" results["pred_evaluation"] = "No" results["pred_weights"] = "No" results["pred_packages"] = "No" else: results["pred_dependencies"] = requirements.evaluate(verbose, llm, zip, readme) results["pred_training"] = training.evaluate(verbose, llm, zip, readme) results["pred_evaluation"] = validating.evaluate(verbose, llm, zip, readme) results["pred_weights"] = weights.evaluate(verbose, llm, zip, readme) results["pred_readme"] = documentation.evaluate(verbose, llm, zip, readme) results["pred_codetocomment"] = documentation.get_code_to_comment_ratio(zip) results["pred_license"] = license.evaluate(verbose, llm, zip, readme) return results except Exception as e: log(verbose, "ERROR", "Evaluating repository failed: " + str(e)) results["pred_live"] = "No" return results def full_evaluation(): paper_dump = pd.read_csv("data/dump.csv", sep="\t") full_results = [] for idx, row in paper_dump.iterrows(): if (pd.isna(row["url"]) | (row["url"] == "")): continue print(str(int(100 * idx / paper_dump["title"].count())) + "% done") result = evaluate(None, False, row["url"], row["title"], row["year"]) for column in result.keys(): row[column] = result[column] full_results.append(row) return pd.DataFrame(full_results) def midl_evaluations(): compare_to_gt = True paper_dump = pd.read_csv("data/dump.csv", sep="\t") verbose = 1 eval_readme = [] eval_training = [] eval_evaluating = [] eval_licensing = [] eval_weights = [] eval_dependencies = [] full_results = [] for idx, row in paper_dump.iterrows(): if (row["venue"] != "MIDL"): continue if (row["venue"] == 2024): continue if (pd.isna(row["url"]) | (row["url"] == "")): continue print(f"\nEvaluating {idx+1} out of {len(paper_dump.index)} papers...") print(f'Paper title - "{row["title"]}" ({row["year"]})') print(f'Repository link - {row["url"]}') result = evaluate(None, verbose, row["url"]) for column in result.keys(): row[column] = result[column] full_results.append(row) if (compare_to_gt): print("\nSummary:") if ((~pd.isna(row["dependencies"])) & (row["pred_dependencies"] is not None)): eval_dependencies.append(row["pred_dependencies"] == row["dependencies"]) print(f"Dependencies acc. - {row['pred_dependencies']} (GT:{row['dependencies']}) / {int(100 * np.mean(eval_dependencies))}%") if ((~pd.isna(row["training"])) & (row["pred_dependencies"] is not None)): eval_training.append(row["training"] == row["pred_training"]) print(f"Training acc. -{row['pred_training']} (GT:{row['training']}) / {int(100 * np.mean(eval_training))}%") if ((~pd.isna(row["evaluation"])) & (row["pred_dependencies"] is not None)): eval_evaluating.append(row["evaluation"] == row["pred_evaluation"]) print(f"Evaluating acc. - {row['pred_evaluation']} (GT:{row['evaluation']}) / {int(100 * np.mean(eval_evaluating))}%") if ((~pd.isna(row["weights"])) & (row["pred_dependencies"] is not None)): eval_weights.append(row["weights"] == row["pred_weights"]) print(f"Weights acc. - {row['pred_weights']} (GT:{row['weights']}) / {int(100 * np.mean(eval_weights))}%") if ((~pd.isna(row["readme"])) & (row["pred_dependencies"] is not None)): eval_readme.append(row["readme"] == row["pred_readme"]) print(f"README acc. - {row['pred_readme']} (GT:{row['readme']}) / {int(100 * np.mean(eval_readme))}%") if ((~pd.isna(row["license"])) & (row["pred_dependencies"] is not None)): eval_licensing.append(("No" if row["license"] == "No" else "Yes") == row["pred_license"]) print(f"LICENSE acc. - {row['pred_license']} (GT:{row['license']}) / {int(100 * np.mean(eval_licensing))}%") return pd.DataFrame(full_results)