File size: 15,959 Bytes
5c081c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef9960e
 
5c081c1
 
ef9960e
5c081c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import torch
import torch.nn as nn

import torch
import torch.nn.functional as F
import torch.nn as nn
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms import Resize
import cv2
import numpy as np
from torchcam.utils import overlay_mask
import gradio as gr
import os

class GeoPrior(nn.Module):

    def __init__(self, embed_dim=128, num_heads=4, initial_value=2, heads_range=6):
        super().__init__()
        angle = 1.0 / (10000 ** torch.linspace(0, 1, embed_dim // num_heads // 2))
        angle = angle.unsqueeze(-1).repeat(1, 2).flatten()
        self.initial_value = initial_value  
        self.heads_range = heads_range 
        self.num_heads = num_heads
        decay = torch.log(1 - 2 ** (-initial_value - heads_range * torch.arange(num_heads, dtype=torch.float) / num_heads))
        self.register_buffer('angle', angle)
        self.register_buffer('decay', decay)
        
    def generate_pos_decay(self, H: int, W: int):
        '''
        generate 2d decay mask, the result is (HW)*(HW)
        '''
        index_h = torch.arange(H).to(self.decay) #保持一個類型
        index_w = torch.arange(W).to(self.decay) #
        grid = torch.meshgrid([index_h, index_w])
        grid = torch.stack(grid, dim=-1).reshape(H*W, 2) #(H*W 2)
        mask = grid[:, None, :] - grid[None, :, :] #(H*W H*W 2)
        mask = (mask.abs()).sum(dim=-1)
        mask = mask #* self.decay[:, None, None]  #(n H*W H*W)
        return mask
    
    def generate_2d_depth_decay(self, H: int, W: int, depth_grid):
        '''
        generate 2d decay mask, the result is (HW)*(HW)
        '''
        # index_h = torch.arange(H).to(self.decay) #保持一個類型
        # index_w = torch.arange(W).to(self.decay) #
        # grid = torch.meshgrid([index_h, index_w])
        # grid = torch.stack(grid, dim=-1).reshape(H*W, 2) #(H*W 2)
        # to do: resize depth_grid to H,W
        # print(depth_grid.shape,H,W,'2d')
        B,_,H,W = depth_grid.shape
        grid_d = depth_grid.reshape(B, H*W, 1)
        print(grid_d.dtype,'aaaaaaaaaaaaaaaaaa')
        # exit()
        mask_d = grid_d[:, :, None, :] - grid_d[:, None,:, :] #(H*W H*W)
        # mask = grid[:, None, :] - grid[None, :, :] #(H*W H*W 2)
        # print(mask_d.shape, self.decay[None, :, None, None].shape,'11111')
        mask_d = (mask_d.abs()).sum(dim=-1)
        # print(torch.max(mask_d),torch.min(mask_d))
        # exit()
        mask_d = mask_d.unsqueeze(1) #* self.decay[None, :, None, None].cpu()  #(n H*W H*W)
        return mask_d
    
    
    
    def forward(self, slen, depth_map, activate_recurrent=False, chunkwise_recurrent=False):
        '''
        slen: (h, w)
        h * w == l
        recurrent is not implemented
        '''
        # print(depth_map.shape,'depth_map')
        depth_map = F.interpolate(depth_map, size=slen,mode='bilinear',align_corners=False)
        # print(depth_map.shape,'downsampled')
        depth_map = depth_map.float()
        # depth_map = Resize(slen[0],slen[1])(depth_map).reshape(slen[0],slen[1])
        
        index = torch.arange(slen[0]*slen[1]).to(self.decay)
        sin = torch.sin(index[:, None] * self.angle[None, :]) #(l d1)
        sin = sin.reshape(slen[0], slen[1], -1) #(h w d1)
        cos = torch.cos(index[:, None] * self.angle[None, :]) #(l d1)
        cos = cos.reshape(slen[0], slen[1], -1) #(h w d1)
        mask_1 = self.generate_pos_decay(slen[0], slen[1]) #(n l l)
        mask_d = self.generate_2d_depth_decay(slen[0], slen[1], depth_map)
        print(torch.max(mask_d),torch.min(mask_d),'-2')
        mask = mask_d#/torch.max(mask_d, dim=0)[0] #mask.cpu() * (2*(1-
        mask_sum = (0.85*mask_1.cpu()+0.15*mask) * self.decay[:, None, None].cpu()
        retention_rel_pos = ((sin, cos), mask, mask_1, mask_sum)
        print(mask.shape,mask_1.shape)
        # exit()

        return retention_rel_pos

def fangda(mask, in_size=(480//20,640//20), out_size=(480,640)):
    new_mask = torch.zeros(out_size)
    ratio_h, ratio_w = out_size[0]//in_size[0], out_size[1]//in_size[1]
    for i in range(in_size[0]):
        for j in range(in_size[1]):
            new_mask[i*ratio_h:(i+1)*ratio_h,j*ratio_w:(j+1)*ratio_w]=mask[i,j]
    return new_mask

def put_mask(image,mask,color_rgb=None,border_mask=False,color_temp='jet',num_c='',beta=2,fixed_num=None):
    mask = mask.numpy()
    image = cv2.resize(image,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
    mask = cv2.resize(mask,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
    color=np.zeros((1,1,3), dtype=np.uint8)
    if color_rgb is not None:
        color[0,0,2],color[0,0,1],color[0,0,0]=color_rgb
    else:
        color[0, 0, 2], color[0, 0, 1], color[0, 0, 0]=120,86,87
    if fixed_num is not None:
        mask = ((1-mask/255))
    else:
        mask=(1-mask/np.max(mask))#*0.5+0.5



    
    heatmap = cv2.applyColorMap((mask * 255).astype(np.uint8), cv2.COLORMAP_JET)
    result = cv2.addWeighted(image, 0.6, heatmap, 0.4, 0)
  
    return np.array(result)
  


def visualize_geometry_prior(RGB_path, Depth_path, index_list=[[584]], cmap_list = ['jet_r'],x=0,y=0):
    
    H = 480//20
    W = 640//20
    index_num = int(x//20)+int((y//20+1)*32)
    index_list = [[index_num]]
    print(index_num)
    
    grid_d = cv2.imread(Depth_path,0)
    # return grid_d
    grid_d = cv2.resize(grid_d,dsize=(W,H),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)

    grid_d = torch.tensor(grid_d).reshape(1,1,H,W)
    grid_d_copy=cv2.imread(Depth_path)
    grid_d_copy = cv2.resize(grid_d_copy,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
    grid_d_copy_gray = cv2.imread(Depth_path,0)
    grid_d_copy_gray = cv2.resize(grid_d_copy_gray,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
    print('min max', torch.max(grid_d), torch.min(grid_d))
    print(grid_d.shape)
    grid_d=grid_d.cpu()

    respos = GeoPrior()
    ((sin,cos), depth_map, mask_1, mask_sum) = respos((H,W), grid_d)
    print(depth_map.shape, mask_1.shape,'-1')
    print(torch.max(depth_map),torch.min(depth_map))

    # 
    img_path = RGB_path
    img = cv2.imread(img_path)
    img = cv2.resize(img,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)

    grid_d_old = cv2.imread(Depth_path,0)
    grid_d_old = cv2.resize(grid_d_old,dsize=(W,H),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
    grid_d_old = torch.tensor(grid_d_old).reshape(H*W,1)
    grid_d=grid_d.cpu()
    mask_d_old = grid_d_old[:, None, :] - grid_d_old[None, :, :] #(H*W H*W 2)
    mask_d_old = (mask_d_old.abs()).sum(dim=-1)
    Color_N=255
    for i in index_list[0]:#range(0,H*W,4):#range(0,H*W,4):#index_list[i_temp]:#range(0,H*W,1): [242,258]:#range
        for color_temp in cmap_list:

            temp_mask_d = depth_map[0,0,i,:].reshape(H,W).cpu()

            temp_mask = mask_1[i,:].reshape(H,W).cpu()
            print(torch.max(temp_mask_d),torch.min(temp_mask_d))
            temp_mask_d_old = mask_d_old[i,:].reshape(H,W).cpu()
            temp_mask_sum = mask_sum[0,0,i,:].reshape(H,W).cpu()
            temp_mask_d=torch.nn.functional.normalize(temp_mask_d, p=2.0, dim=1, eps=1e-12, out=None)

            temp_mask_d = 255*(temp_mask_d-torch.min(temp_mask_d))/(torch.max(temp_mask_d)-torch.min(temp_mask_d))
            
            temp_mask = 255*((temp_mask-torch.min(temp_mask))/(torch.max(temp_mask)-torch.min(temp_mask)))

            temp_mask_sum = 255*((temp_mask_sum-torch.min(temp_mask_sum))/(torch.max(temp_mask_sum)-torch.min(temp_mask_sum)))
            gama =0.55
            temp_mask_d_old = 255*(temp_mask_d_old-torch.min(temp_mask_d_old))/(torch.max(temp_mask_d_old)-torch.min(temp_mask_d_old))
            a0=put_mask(img,fangda(temp_mask),color_temp=color_temp)
            jiange = 255*torch.ones(img.shape[0],20)
            temp_mask_fuse = torch.cat([fangda(temp_mask),jiange,fangda(temp_mask_d),jiange,fangda(gama*temp_mask+(1-gama)*temp_mask_d),jiange,torch.tensor(grid_d_copy_gray)],dim=1)
            jiange = np.ones((img.shape[0],20, 3)) * 255
            
            a2 = put_mask(img, fangda(temp_mask_d),color_temp=color_temp)
            print(a2.shape)
            a3 = put_mask(img,fangda(gama*temp_mask+(1-gama)*temp_mask_d),color_temp=color_temp)
            # image = np.concatenate([img,grid_d_copy,a0,jiange, a2,jiange,a3,jiange] ,axis=1)
            # print(image.dtype)
            # print(np.max(image),np.min(image))
            # cv2.imshow('./temp/demo_'+color_temp+"_"+str(i)+'.png',image.astype(np.uint8))
    return a3.astype(np.uint8)

# 新增gradio接口函数
def process_images(rgb_image, depth_image):
    """
    处理上传的图像并返回可视化结果
    
    Args:
        rgb_image: gradio上传的RGB图像
        depth_image: gradio上传的深度图像
    Returns:
        可视化结果图像
    """
    # 保存临时文件
    temp_rgb_path = "temp_rgb.jpg"
    temp_depth_path = "temp_depth.png"
    
    # 保存上传的图像
    cv2.imwrite(temp_rgb_path, cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR))
    cv2.imwrite(temp_depth_path, depth_image)
    
    # 调用原有的可视化函数
    try:
        result = visualize_geometry_prior(temp_rgb_path, temp_depth_path,x=x,y=y)
        
        # 清理临时文件
        os.remove(temp_rgb_path)
        os.remove(temp_depth_path)
        
        # 转换颜色空间
        result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
        return result
    except Exception as e:
        print(f"Error during processing: {str(e)}")
        return None
    finally:
        # 确保临时文件被删除
        if os.path.exists(temp_rgb_path):
            os.remove(temp_rgb_path)
        if os.path.exists(temp_depth_path):
            os.remove(temp_depth_path)

def draw_star(image, x, y, size=20, color=(255, 0, 0), thickness=2):
    """在图像上绘制五角星"""
    # 计算五角星的顶点
    pts = np.array([[x, y - size],  # 顶部点
                    [x + size * 0.588, y + size * 0.809],  # 右下
                    [x - size * 0.951, y - size * 0.309],  # 左上
                    [x + size * 0.951, y - size * 0.309],  # 右上
                    [x - size * 0.588, y + size * 0.809]], np.int32)  # 左下
    
    # 绘制五角星
    cv2.polylines(image, [pts], True, color, thickness)
    return image

# 创建Gradio界面
def create_demo():
    with gr.Blocks() as demo:
        gr.Markdown("# Geometry Prior Visualization Demo")
        gr.Markdown("""
        ### Instructions:
        1. Upload RGB and Depth images
        2. Enter X (0-640) and Y (0-480) coordinates
        3. A star marker will be shown on the images at the selected position
        4. Click "Generate Visualization" to create the visualization
        """)
        
        with gr.Row():
            with gr.Column():
                rgb_input = gr.Image(label="Upload RGB Image")
                depth_input = gr.Image(label="Upload Depth Image", image_mode="L")
                with gr.Row():
                    x_coord = gr.Number(label="X (0-640)", value=160, minimum=0, maximum=640)
                    y_coord = gr.Number(label="Y (0-480)", value=270, minimum=0, maximum=480)
                coordinates_text = gr.Textbox(label="Grid Position and Index", interactive=False)
            
            with gr.Column():
                marked_rgb = gr.Image(label="Marked RGB Image")
                marked_depth = gr.Image(label="Marked Depth Image")
                output_image = gr.Image(label="Visualization Result")
                status_text = gr.Textbox(label="Status", interactive=False)

        def update_coordinates_and_images(rgb_image, depth_image, x, y):
            # 确保坐标在有效范围内
            x = max(0, min(640, float(x)))
            y = max(0, min(480, float(y)))
            
            # 计算在24x32网格中的位置
            H, W = 480//20, 640//20  # 24x32
            scaled_x = int(x * W / 640)
            scaled_y = int(y * H / 480)
            
            # 计算一维索引
            grid_index = scaled_y * W + scaled_x
            
            # 在RGB图像上绘制五角星
            rgb_marked = rgb_image.copy()
            if len(rgb_marked.shape) == 2:  # 如果是灰度图
                rgb_marked = cv2.cvtColor(rgb_marked, cv2.COLOR_GRAY2BGR)
            elif rgb_marked.shape[2] == 4:  # 如果是RGBA
                rgb_marked = cv2.cvtColor(rgb_marked, cv2.COLOR_RGBA2BGR)
            rgb_marked = draw_star(rgb_marked, int(x), int(y), size=20, color=(255, 0, 0))
            
            # 在深度图像上绘制五角星
            depth_marked = depth_image.copy()
            if len(depth_marked.shape) == 2:  # 如果是单通道
                depth_marked = cv2.cvtColor(depth_marked, cv2.COLOR_GRAY2BGR)
            depth_marked = draw_star(depth_marked, int(x), int(y), size=20, color=(0, 255, 0))
            
            return (f"Grid position: ({scaled_x}, {scaled_y}), Index: {grid_index}", 
                   rgb_marked, 
                   depth_marked)

        # 坐标更新按钮
        coord_update_btn = gr.Button("Update Coordinates")
        coord_update_btn.click(
            fn=update_coordinates_and_images,
            inputs=[rgb_input, depth_input, x_coord, y_coord],
            outputs=[coordinates_text, marked_rgb, marked_depth]
        )
        
        def process_with_status(rgb_image, depth_image, coords_text, x, y):
            try:
                # 保存临时文件
                temp_rgb_path = "temp_rgb.jpg"
                temp_depth_path = "temp_depth.png"
                
                # 保存上传的图像
                cv2.imwrite(temp_rgb_path, cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR))
                cv2.imwrite(temp_depth_path, depth_image)
                
                if coords_text:
                    index = int(coords_text.split("Index: ")[-1])
                    index_list = [[index]]
                else:
                    index_list = [[584]]  # 默认值
                
                result = visualize_geometry_prior(temp_rgb_path, temp_depth_path, index_list=index_list, x=x, y=y)
                
                # 清理临时文件
                os.remove(temp_rgb_path)
                os.remove(temp_depth_path)
                
                # 转换颜色空间以正确显示
                result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
                return result, "Processing completed successfully!"
            except Exception as e:
                # 确保临时文件被删除
                if os.path.exists(temp_rgb_path):
                    os.remove(temp_rgb_path)
                if os.path.exists(temp_depth_path):
                    os.remove(temp_depth_path)
                return None, f"Error: {str(e)}"

        process_btn = gr.Button("Generate Visualization")
        process_btn.click(
            fn=process_with_status,
            inputs=[rgb_input, depth_input, coordinates_text, x_coord, y_coord],
            outputs=[output_image, status_text]
        )
        
        # 添加自动更新功能
        x_coord.change(
            fn=update_coordinates_and_images,
            inputs=[rgb_input, depth_input, x_coord, y_coord],
            outputs=[coordinates_text, marked_rgb, marked_depth]
        )
        y_coord.change(
            fn=update_coordinates_and_images,
            inputs=[rgb_input, depth_input, x_coord, y_coord],
            outputs=[coordinates_text, marked_rgb, marked_depth]
        )
        
        gr.Examples(
            examples=[
                ["assets/example_rgb.jpg", "assets/example_depth.png"]
            ],
            inputs=[rgb_input, depth_input]
        )
    
    return demo

# 启动代码
if __name__ == "__main__":
    demo = create_demo()
    demo.queue()
    demo.launch(
        server_name="0.0.0.0",
        share=True,
        debug=True
    )