File size: 15,959 Bytes
5c081c1 ef9960e 5c081c1 ef9960e 5c081c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import torch
import torch.nn as nn
import torch
import torch.nn.functional as F
import torch.nn as nn
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms import Resize
import cv2
import numpy as np
from torchcam.utils import overlay_mask
import gradio as gr
import os
class GeoPrior(nn.Module):
def __init__(self, embed_dim=128, num_heads=4, initial_value=2, heads_range=6):
super().__init__()
angle = 1.0 / (10000 ** torch.linspace(0, 1, embed_dim // num_heads // 2))
angle = angle.unsqueeze(-1).repeat(1, 2).flatten()
self.initial_value = initial_value
self.heads_range = heads_range
self.num_heads = num_heads
decay = torch.log(1 - 2 ** (-initial_value - heads_range * torch.arange(num_heads, dtype=torch.float) / num_heads))
self.register_buffer('angle', angle)
self.register_buffer('decay', decay)
def generate_pos_decay(self, H: int, W: int):
'''
generate 2d decay mask, the result is (HW)*(HW)
'''
index_h = torch.arange(H).to(self.decay) #保持一個類型
index_w = torch.arange(W).to(self.decay) #
grid = torch.meshgrid([index_h, index_w])
grid = torch.stack(grid, dim=-1).reshape(H*W, 2) #(H*W 2)
mask = grid[:, None, :] - grid[None, :, :] #(H*W H*W 2)
mask = (mask.abs()).sum(dim=-1)
mask = mask #* self.decay[:, None, None] #(n H*W H*W)
return mask
def generate_2d_depth_decay(self, H: int, W: int, depth_grid):
'''
generate 2d decay mask, the result is (HW)*(HW)
'''
# index_h = torch.arange(H).to(self.decay) #保持一個類型
# index_w = torch.arange(W).to(self.decay) #
# grid = torch.meshgrid([index_h, index_w])
# grid = torch.stack(grid, dim=-1).reshape(H*W, 2) #(H*W 2)
# to do: resize depth_grid to H,W
# print(depth_grid.shape,H,W,'2d')
B,_,H,W = depth_grid.shape
grid_d = depth_grid.reshape(B, H*W, 1)
print(grid_d.dtype,'aaaaaaaaaaaaaaaaaa')
# exit()
mask_d = grid_d[:, :, None, :] - grid_d[:, None,:, :] #(H*W H*W)
# mask = grid[:, None, :] - grid[None, :, :] #(H*W H*W 2)
# print(mask_d.shape, self.decay[None, :, None, None].shape,'11111')
mask_d = (mask_d.abs()).sum(dim=-1)
# print(torch.max(mask_d),torch.min(mask_d))
# exit()
mask_d = mask_d.unsqueeze(1) #* self.decay[None, :, None, None].cpu() #(n H*W H*W)
return mask_d
def forward(self, slen, depth_map, activate_recurrent=False, chunkwise_recurrent=False):
'''
slen: (h, w)
h * w == l
recurrent is not implemented
'''
# print(depth_map.shape,'depth_map')
depth_map = F.interpolate(depth_map, size=slen,mode='bilinear',align_corners=False)
# print(depth_map.shape,'downsampled')
depth_map = depth_map.float()
# depth_map = Resize(slen[0],slen[1])(depth_map).reshape(slen[0],slen[1])
index = torch.arange(slen[0]*slen[1]).to(self.decay)
sin = torch.sin(index[:, None] * self.angle[None, :]) #(l d1)
sin = sin.reshape(slen[0], slen[1], -1) #(h w d1)
cos = torch.cos(index[:, None] * self.angle[None, :]) #(l d1)
cos = cos.reshape(slen[0], slen[1], -1) #(h w d1)
mask_1 = self.generate_pos_decay(slen[0], slen[1]) #(n l l)
mask_d = self.generate_2d_depth_decay(slen[0], slen[1], depth_map)
print(torch.max(mask_d),torch.min(mask_d),'-2')
mask = mask_d#/torch.max(mask_d, dim=0)[0] #mask.cpu() * (2*(1-
mask_sum = (0.85*mask_1.cpu()+0.15*mask) * self.decay[:, None, None].cpu()
retention_rel_pos = ((sin, cos), mask, mask_1, mask_sum)
print(mask.shape,mask_1.shape)
# exit()
return retention_rel_pos
def fangda(mask, in_size=(480//20,640//20), out_size=(480,640)):
new_mask = torch.zeros(out_size)
ratio_h, ratio_w = out_size[0]//in_size[0], out_size[1]//in_size[1]
for i in range(in_size[0]):
for j in range(in_size[1]):
new_mask[i*ratio_h:(i+1)*ratio_h,j*ratio_w:(j+1)*ratio_w]=mask[i,j]
return new_mask
def put_mask(image,mask,color_rgb=None,border_mask=False,color_temp='jet',num_c='',beta=2,fixed_num=None):
mask = mask.numpy()
image = cv2.resize(image,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
mask = cv2.resize(mask,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
color=np.zeros((1,1,3), dtype=np.uint8)
if color_rgb is not None:
color[0,0,2],color[0,0,1],color[0,0,0]=color_rgb
else:
color[0, 0, 2], color[0, 0, 1], color[0, 0, 0]=120,86,87
if fixed_num is not None:
mask = ((1-mask/255))
else:
mask=(1-mask/np.max(mask))#*0.5+0.5
heatmap = cv2.applyColorMap((mask * 255).astype(np.uint8), cv2.COLORMAP_JET)
result = cv2.addWeighted(image, 0.6, heatmap, 0.4, 0)
return np.array(result)
def visualize_geometry_prior(RGB_path, Depth_path, index_list=[[584]], cmap_list = ['jet_r'],x=0,y=0):
H = 480//20
W = 640//20
index_num = int(x//20)+int((y//20+1)*32)
index_list = [[index_num]]
print(index_num)
grid_d = cv2.imread(Depth_path,0)
# return grid_d
grid_d = cv2.resize(grid_d,dsize=(W,H),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
grid_d = torch.tensor(grid_d).reshape(1,1,H,W)
grid_d_copy=cv2.imread(Depth_path)
grid_d_copy = cv2.resize(grid_d_copy,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
grid_d_copy_gray = cv2.imread(Depth_path,0)
grid_d_copy_gray = cv2.resize(grid_d_copy_gray,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
print('min max', torch.max(grid_d), torch.min(grid_d))
print(grid_d.shape)
grid_d=grid_d.cpu()
respos = GeoPrior()
((sin,cos), depth_map, mask_1, mask_sum) = respos((H,W), grid_d)
print(depth_map.shape, mask_1.shape,'-1')
print(torch.max(depth_map),torch.min(depth_map))
#
img_path = RGB_path
img = cv2.imread(img_path)
img = cv2.resize(img,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
grid_d_old = cv2.imread(Depth_path,0)
grid_d_old = cv2.resize(grid_d_old,dsize=(W,H),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
grid_d_old = torch.tensor(grid_d_old).reshape(H*W,1)
grid_d=grid_d.cpu()
mask_d_old = grid_d_old[:, None, :] - grid_d_old[None, :, :] #(H*W H*W 2)
mask_d_old = (mask_d_old.abs()).sum(dim=-1)
Color_N=255
for i in index_list[0]:#range(0,H*W,4):#range(0,H*W,4):#index_list[i_temp]:#range(0,H*W,1): [242,258]:#range
for color_temp in cmap_list:
temp_mask_d = depth_map[0,0,i,:].reshape(H,W).cpu()
temp_mask = mask_1[i,:].reshape(H,W).cpu()
print(torch.max(temp_mask_d),torch.min(temp_mask_d))
temp_mask_d_old = mask_d_old[i,:].reshape(H,W).cpu()
temp_mask_sum = mask_sum[0,0,i,:].reshape(H,W).cpu()
temp_mask_d=torch.nn.functional.normalize(temp_mask_d, p=2.0, dim=1, eps=1e-12, out=None)
temp_mask_d = 255*(temp_mask_d-torch.min(temp_mask_d))/(torch.max(temp_mask_d)-torch.min(temp_mask_d))
temp_mask = 255*((temp_mask-torch.min(temp_mask))/(torch.max(temp_mask)-torch.min(temp_mask)))
temp_mask_sum = 255*((temp_mask_sum-torch.min(temp_mask_sum))/(torch.max(temp_mask_sum)-torch.min(temp_mask_sum)))
gama =0.55
temp_mask_d_old = 255*(temp_mask_d_old-torch.min(temp_mask_d_old))/(torch.max(temp_mask_d_old)-torch.min(temp_mask_d_old))
a0=put_mask(img,fangda(temp_mask),color_temp=color_temp)
jiange = 255*torch.ones(img.shape[0],20)
temp_mask_fuse = torch.cat([fangda(temp_mask),jiange,fangda(temp_mask_d),jiange,fangda(gama*temp_mask+(1-gama)*temp_mask_d),jiange,torch.tensor(grid_d_copy_gray)],dim=1)
jiange = np.ones((img.shape[0],20, 3)) * 255
a2 = put_mask(img, fangda(temp_mask_d),color_temp=color_temp)
print(a2.shape)
a3 = put_mask(img,fangda(gama*temp_mask+(1-gama)*temp_mask_d),color_temp=color_temp)
# image = np.concatenate([img,grid_d_copy,a0,jiange, a2,jiange,a3,jiange] ,axis=1)
# print(image.dtype)
# print(np.max(image),np.min(image))
# cv2.imshow('./temp/demo_'+color_temp+"_"+str(i)+'.png',image.astype(np.uint8))
return a3.astype(np.uint8)
# 新增gradio接口函数
def process_images(rgb_image, depth_image):
"""
处理上传的图像并返回可视化结果
Args:
rgb_image: gradio上传的RGB图像
depth_image: gradio上传的深度图像
Returns:
可视化结果图像
"""
# 保存临时文件
temp_rgb_path = "temp_rgb.jpg"
temp_depth_path = "temp_depth.png"
# 保存上传的图像
cv2.imwrite(temp_rgb_path, cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR))
cv2.imwrite(temp_depth_path, depth_image)
# 调用原有的可视化函数
try:
result = visualize_geometry_prior(temp_rgb_path, temp_depth_path,x=x,y=y)
# 清理临时文件
os.remove(temp_rgb_path)
os.remove(temp_depth_path)
# 转换颜色空间
result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
return result
except Exception as e:
print(f"Error during processing: {str(e)}")
return None
finally:
# 确保临时文件被删除
if os.path.exists(temp_rgb_path):
os.remove(temp_rgb_path)
if os.path.exists(temp_depth_path):
os.remove(temp_depth_path)
def draw_star(image, x, y, size=20, color=(255, 0, 0), thickness=2):
"""在图像上绘制五角星"""
# 计算五角星的顶点
pts = np.array([[x, y - size], # 顶部点
[x + size * 0.588, y + size * 0.809], # 右下
[x - size * 0.951, y - size * 0.309], # 左上
[x + size * 0.951, y - size * 0.309], # 右上
[x - size * 0.588, y + size * 0.809]], np.int32) # 左下
# 绘制五角星
cv2.polylines(image, [pts], True, color, thickness)
return image
# 创建Gradio界面
def create_demo():
with gr.Blocks() as demo:
gr.Markdown("# Geometry Prior Visualization Demo")
gr.Markdown("""
### Instructions:
1. Upload RGB and Depth images
2. Enter X (0-640) and Y (0-480) coordinates
3. A star marker will be shown on the images at the selected position
4. Click "Generate Visualization" to create the visualization
""")
with gr.Row():
with gr.Column():
rgb_input = gr.Image(label="Upload RGB Image")
depth_input = gr.Image(label="Upload Depth Image", image_mode="L")
with gr.Row():
x_coord = gr.Number(label="X (0-640)", value=160, minimum=0, maximum=640)
y_coord = gr.Number(label="Y (0-480)", value=270, minimum=0, maximum=480)
coordinates_text = gr.Textbox(label="Grid Position and Index", interactive=False)
with gr.Column():
marked_rgb = gr.Image(label="Marked RGB Image")
marked_depth = gr.Image(label="Marked Depth Image")
output_image = gr.Image(label="Visualization Result")
status_text = gr.Textbox(label="Status", interactive=False)
def update_coordinates_and_images(rgb_image, depth_image, x, y):
# 确保坐标在有效范围内
x = max(0, min(640, float(x)))
y = max(0, min(480, float(y)))
# 计算在24x32网格中的位置
H, W = 480//20, 640//20 # 24x32
scaled_x = int(x * W / 640)
scaled_y = int(y * H / 480)
# 计算一维索引
grid_index = scaled_y * W + scaled_x
# 在RGB图像上绘制五角星
rgb_marked = rgb_image.copy()
if len(rgb_marked.shape) == 2: # 如果是灰度图
rgb_marked = cv2.cvtColor(rgb_marked, cv2.COLOR_GRAY2BGR)
elif rgb_marked.shape[2] == 4: # 如果是RGBA
rgb_marked = cv2.cvtColor(rgb_marked, cv2.COLOR_RGBA2BGR)
rgb_marked = draw_star(rgb_marked, int(x), int(y), size=20, color=(255, 0, 0))
# 在深度图像上绘制五角星
depth_marked = depth_image.copy()
if len(depth_marked.shape) == 2: # 如果是单通道
depth_marked = cv2.cvtColor(depth_marked, cv2.COLOR_GRAY2BGR)
depth_marked = draw_star(depth_marked, int(x), int(y), size=20, color=(0, 255, 0))
return (f"Grid position: ({scaled_x}, {scaled_y}), Index: {grid_index}",
rgb_marked,
depth_marked)
# 坐标更新按钮
coord_update_btn = gr.Button("Update Coordinates")
coord_update_btn.click(
fn=update_coordinates_and_images,
inputs=[rgb_input, depth_input, x_coord, y_coord],
outputs=[coordinates_text, marked_rgb, marked_depth]
)
def process_with_status(rgb_image, depth_image, coords_text, x, y):
try:
# 保存临时文件
temp_rgb_path = "temp_rgb.jpg"
temp_depth_path = "temp_depth.png"
# 保存上传的图像
cv2.imwrite(temp_rgb_path, cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR))
cv2.imwrite(temp_depth_path, depth_image)
if coords_text:
index = int(coords_text.split("Index: ")[-1])
index_list = [[index]]
else:
index_list = [[584]] # 默认值
result = visualize_geometry_prior(temp_rgb_path, temp_depth_path, index_list=index_list, x=x, y=y)
# 清理临时文件
os.remove(temp_rgb_path)
os.remove(temp_depth_path)
# 转换颜色空间以正确显示
result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
return result, "Processing completed successfully!"
except Exception as e:
# 确保临时文件被删除
if os.path.exists(temp_rgb_path):
os.remove(temp_rgb_path)
if os.path.exists(temp_depth_path):
os.remove(temp_depth_path)
return None, f"Error: {str(e)}"
process_btn = gr.Button("Generate Visualization")
process_btn.click(
fn=process_with_status,
inputs=[rgb_input, depth_input, coordinates_text, x_coord, y_coord],
outputs=[output_image, status_text]
)
# 添加自动更新功能
x_coord.change(
fn=update_coordinates_and_images,
inputs=[rgb_input, depth_input, x_coord, y_coord],
outputs=[coordinates_text, marked_rgb, marked_depth]
)
y_coord.change(
fn=update_coordinates_and_images,
inputs=[rgb_input, depth_input, x_coord, y_coord],
outputs=[coordinates_text, marked_rgb, marked_depth]
)
gr.Examples(
examples=[
["assets/example_rgb.jpg", "assets/example_depth.png"]
],
inputs=[rgb_input, depth_input]
)
return demo
# 启动代码
if __name__ == "__main__":
demo = create_demo()
demo.queue()
demo.launch(
server_name="0.0.0.0",
share=True,
debug=True
)
|