Spaces:
Runtime error
Runtime error
File size: 68,990 Bytes
bf7bd7e a57357b 32e9f89 a57357b 9f8478c ae57ea2 127e6b1 ae57ea2 2b5da3a bf7bd7e ae57ea2 32e9f89 2b5da3a ae57ea2 a57357b 2b5da3a 127e6b1 32e9f89 127e6b1 32e9f89 bbeed83 127e6b1 32e9f89 ae57ea2 32e9f89 127e6b1 32e9f89 127e6b1 ae57ea2 adb15f9 a57357b 32e9f89 a57357b 32e9f89 a57357b 32e9f89 a57357b 5b6d8f0 4a1fd53 5b6d8f0 a57357b 4a1fd53 5b6d8f0 4a1fd53 5b6d8f0 4a1fd53 a57357b 75f9a64 a57357b 75f9a64 127e6b1 75f9a64 a57357b 75f9a64 127e6b1 75f9a64 a90f827 75f9a64 127e6b1 0364d5c 75f9a64 adb15f9 127e6b1 75f9a64 0364d5c 4a1fd53 75f9a64 93b2fec 75f9a64 127e6b1 75f9a64 a57357b 75f9a64 a57357b 75f9a64 a57357b 75f9a64 a57357b 75f9a64 a57357b 75f9a64 20852a7 75f9a64 20852a7 75f9a64 93b2fec 75f9a64 93b2fec 75f9a64 73ea801 75f9a64 a57357b 5a7635c a57357b 75f9a64 a57357b 20852a7 4ce739a 20852a7 dc055e5 20852a7 356ee13 4ce739a dc055e5 4ce739a dc055e5 20852a7 356ee13 dc055e5 356ee13 20852a7 4ce739a 20852a7 2b5da3a 20852a7 2b5da3a 20852a7 2b5da3a dc055e5 2b5da3a 20852a7 2b5da3a b033a7b 2b5da3a 20852a7 2b5da3a 20852a7 75f9a64 adb15f9 bbeed83 dc055e5 bbeed83 ae57ea2 adb15f9 75f9a64 dc055e5 adb15f9 5a7635c 75f9a64 dc055e5 75f9a64 5a7635c 75f9a64 5a7635c 75f9a64 adb15f9 127e6b1 a90f827 75f9a64 dc055e5 75f9a64 dc055e5 a90f827 75f9a64 127e6b1 75f9a64 dc055e5 75f9a64 dc055e5 75f9a64 dc055e5 75f9a64 dc055e5 75f9a64 32e9f89 75f9a64 127e6b1 dc055e5 75f9a64 127e6b1 75f9a64 32e9f89 127e6b1 dc055e5 578eea8 75f9a64 578eea8 75f9a64 a90f827 75f9a64 a90f827 75f9a64 32e9f89 75f9a64 127e6b1 75f9a64 127e6b1 75f9a64 127e6b1 75f9a64 127e6b1 75f9a64 127e6b1 75f9a64 127e6b1 75f9a64 a57357b 75f9a64 a57357b 5b6d8f0 ae57ea2 5b6d8f0 bbeed83 127e6b1 75f9a64 93b2fec a57357b 75f9a64 93b2fec 75f9a64 93b2fec 75f9a64 93b2fec 75f9a64 a57357b 4a1fd53 75f9a64 93b2fec 75f9a64 7e5a6ad 75f9a64 93b2fec 75f9a64 93b2fec 75f9a64 93b2fec 75f9a64 a57357b 75f9a64 93b2fec 4a1fd53 a57357b 93b2fec 75f9a64 a57357b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Basic Python imports
import os
import sys
import json
import argparse
import logging
from datetime import datetime
import time
import warnings
import traceback
from importlib.util import find_spec
import multiprocessing
import torch
import random
import numpy as np
from tqdm import tqdm
# Check hardware capabilities first
CUDA_AVAILABLE = "CUDA_VISIBLE_DEVICES" in os.environ or os.environ.get("NVIDIA_VISIBLE_DEVICES") != ""
NUM_GPUS = torch.cuda.device_count() if CUDA_AVAILABLE else 0
DEVICE_TYPE = "cuda" if CUDA_AVAILABLE else "cpu"
# Set the multiprocessing start method to 'spawn' for CUDA compatibility
if CUDA_AVAILABLE:
try:
multiprocessing.set_start_method('spawn', force=True)
print("Set multiprocessing start method to 'spawn' for CUDA compatibility")
except RuntimeError:
# Method already set, which is fine
print("Multiprocessing start method already set")
# Import order is important: unsloth should be imported before transformers
# Check for libraries without importing them
unsloth_available = find_spec("unsloth") is not None
if unsloth_available:
import unsloth
# Import torch first, then transformers if available
import torch
transformers_available = find_spec("transformers") is not None
if transformers_available:
import transformers
from transformers import AutoTokenizer, TrainingArguments, Trainer, TrainerCallback, set_seed
from torch.utils.data import DataLoader
peft_available = find_spec("peft") is not None
if peft_available:
import peft
# Only import HF datasets if available
datasets_available = find_spec("datasets") is not None
if datasets_available:
from datasets import load_dataset
# Set up the logger
logger = logging.getLogger(__name__)
log_handler = logging.StreamHandler()
log_format = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
log_handler.setFormatter(log_format)
logger.addHandler(log_handler)
logger.setLevel(logging.INFO)
# Define a clean logging function for HF Space compatibility
def log_info(message):
"""Log information in a format compatible with Hugging Face Spaces"""
# Just use the logger, but ensure consistent formatting
logger.info(message)
# Also ensure output is flushed immediately for streaming
sys.stdout.flush()
# Check for BitsAndBytes
try:
from transformers import BitsAndBytesConfig
bitsandbytes_available = True
except ImportError:
bitsandbytes_available = False
logger.warning("BitsAndBytes not available. 4-bit quantization will not be used.")
# Check for PEFT
try:
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
peft_available = True
except ImportError:
peft_available = False
logger.warning("PEFT not available. Parameter-efficient fine-tuning will not be used.")
def load_env_variables():
"""Load environment variables from system, .env file, or Hugging Face Space variables."""
# Check if we're running in a Hugging Face Space
if os.environ.get("SPACE_ID"):
logging.info("Running in Hugging Face Space")
# Log the presence of variables (without revealing values)
logging.info(f"HF_TOKEN available: {bool(os.environ.get('HF_TOKEN'))}")
logging.info(f"HF_USERNAME available: {bool(os.environ.get('HF_USERNAME'))}")
# If username is not set, try to extract from SPACE_ID
if not os.environ.get("HF_USERNAME") and "/" in os.environ.get("SPACE_ID", ""):
username = os.environ.get("SPACE_ID").split("/")[0]
os.environ["HF_USERNAME"] = username
logging.info(f"Set HF_USERNAME from SPACE_ID: {username}")
else:
# Try to load from .env file if not in a Space
try:
from dotenv import load_dotenv
# First check the current directory
env_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), ".env")
if os.path.exists(env_path):
load_dotenv(env_path)
logging.info(f"Loaded environment variables from {env_path}")
logging.info(f"HF_TOKEN loaded from .env file: {bool(os.environ.get('HF_TOKEN'))}")
logging.info(f"HF_USERNAME loaded from .env file: {bool(os.environ.get('HF_USERNAME'))}")
logging.info(f"HF_SPACE_NAME loaded from .env file: {bool(os.environ.get('HF_SPACE_NAME'))}")
else:
# Try the shared directory as fallback
shared_env_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "shared", ".env")
if os.path.exists(shared_env_path):
load_dotenv(shared_env_path)
logging.info(f"Loaded environment variables from {shared_env_path}")
logging.info(f"HF_TOKEN loaded from shared .env file: {bool(os.environ.get('HF_TOKEN'))}")
logging.info(f"HF_USERNAME loaded from shared .env file: {bool(os.environ.get('HF_USERNAME'))}")
logging.info(f"HF_SPACE_NAME loaded from shared .env file: {bool(os.environ.get('HF_SPACE_NAME'))}")
else:
logging.warning(f"No .env file found in current or shared directory")
except ImportError:
logging.warning("python-dotenv not installed, not loading from .env file")
if not os.environ.get("HF_TOKEN"):
logger.warning("HF_TOKEN is not set. Pushing to Hugging Face Hub will not work.")
if not os.environ.get("HF_USERNAME"):
logger.warning("HF_USERNAME is not set. Using default username.")
if not os.environ.get("HF_SPACE_NAME"):
logger.warning("HF_SPACE_NAME is not set. Using default space name.")
# Set HF_TOKEN for huggingface_hub
if os.environ.get("HF_TOKEN"):
os.environ["HUGGING_FACE_HUB_TOKEN"] = os.environ.get("HF_TOKEN")
def load_configs(base_path):
"""Load configuration from transformers_config.json file."""
# Using a single consolidated config file
config_file = base_path
try:
with open(config_file, "r") as f:
config = json.load(f)
logger.info(f"Loaded configuration from {config_file}")
return config
except Exception as e:
logger.error(f"Error loading {config_file}: {e}")
raise
def parse_args():
"""
Parse command line arguments for the training script.
Returns:
argparse.Namespace: The parsed command line arguments
"""
parser = argparse.ArgumentParser(description="Run training for language models")
parser.add_argument(
"--config_file",
type=str,
default=None,
help="Path to the configuration file (default: transformers_config.json in script directory)"
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="Random seed for reproducibility (default: based on current time)"
)
parser.add_argument(
"--log_level",
type=str,
choices=["debug", "info", "warning", "error", "critical"],
default="info",
help="Logging level (default: info)"
)
return parser.parse_args()
def load_model_and_tokenizer(config):
"""
Load the model and tokenizer according to the configuration.
Args:
config (dict): Complete configuration dictionary
Returns:
tuple: (model, tokenizer) - The loaded model and tokenizer
"""
# Extract model configuration
model_config = get_config_value(config, "model", {})
model_name = get_config_value(model_config, "name", "unsloth/phi-4-unsloth-bnb-4bit")
use_fast_tokenizer = get_config_value(model_config, "use_fast_tokenizer", True)
trust_remote_code = get_config_value(model_config, "trust_remote_code", True)
model_revision = get_config_value(config, "model_revision", "main")
# Unsloth configuration
unsloth_config = get_config_value(config, "unsloth", {})
unsloth_enabled = get_config_value(unsloth_config, "enabled", True)
# Tokenizer configuration
tokenizer_config = get_config_value(config, "tokenizer", {})
max_seq_length = min(
get_config_value(tokenizer_config, "max_seq_length", 2048),
4096 # Maximum supported by most models
)
add_eos_token = get_config_value(tokenizer_config, "add_eos_token", True)
chat_template = get_config_value(tokenizer_config, "chat_template", None)
padding_side = get_config_value(tokenizer_config, "padding_side", "right")
# Check for flash attention
use_flash_attention = get_config_value(config, "use_flash_attention", False)
flash_attention_available = False
try:
import flash_attn
flash_attention_available = True
log_info(f"Flash Attention detected (version: {flash_attn.__version__})")
except ImportError:
if use_flash_attention:
log_info("Flash Attention requested but not available")
log_info(f"Loading model: {model_name} (revision: {model_revision})")
log_info(f"Max sequence length: {max_seq_length}")
try:
if unsloth_enabled and unsloth_available:
log_info("Using Unsloth for 4-bit quantized model and LoRA")
# Load using Unsloth
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=max_seq_length,
dtype=get_config_value(config, "torch_dtype", "bfloat16"),
revision=model_revision,
trust_remote_code=trust_remote_code,
use_flash_attention_2=use_flash_attention and flash_attention_available
)
# Configure tokenizer settings
tokenizer.padding_side = padding_side
if add_eos_token and tokenizer.eos_token is None:
log_info("Setting EOS token")
tokenizer.add_special_tokens({"eos_token": "</s>"})
# Set chat template if specified
if chat_template:
log_info(f"Setting chat template: {chat_template}")
if hasattr(tokenizer, "chat_template"):
tokenizer.chat_template = chat_template
else:
log_info("Tokenizer does not support chat templates, using default formatting")
# Apply LoRA
lora_r = get_config_value(unsloth_config, "r", 16)
lora_alpha = get_config_value(unsloth_config, "alpha", 32)
lora_dropout = get_config_value(unsloth_config, "dropout", 0)
target_modules = get_config_value(unsloth_config, "target_modules",
["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"])
log_info(f"Applying LoRA with r={lora_r}, alpha={lora_alpha}, dropout={lora_dropout}")
model = FastLanguageModel.get_peft_model(
model,
r=lora_r,
target_modules=target_modules,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
bias="none",
use_gradient_checkpointing=get_config_value(config, "training.gradient_checkpointing", True),
random_state=0,
max_seq_length=max_seq_length,
modules_to_save=None
)
if use_flash_attention and flash_attention_available:
log_info("🚀 Using Flash Attention for faster training")
elif use_flash_attention and not flash_attention_available:
log_info("⚠️ Flash Attention requested but not available - using standard attention")
else:
# Standard HuggingFace loading
log_info("Using standard HuggingFace model loading (Unsloth not available or disabled)")
from transformers import AutoModelForCausalLM, AutoTokenizer
# Check if flash attention should be enabled in config
use_attn_implementation = None
if use_flash_attention and flash_attention_available:
use_attn_implementation = "flash_attention_2"
log_info("🚀 Using Flash Attention for faster training")
# Load tokenizer first
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=trust_remote_code,
use_fast=use_fast_tokenizer,
revision=model_revision,
padding_side=padding_side
)
# Configure tokenizer settings
if add_eos_token and tokenizer.eos_token is None:
log_info("Setting EOS token")
tokenizer.add_special_tokens({"eos_token": "</s>"})
# Set chat template if specified
if chat_template:
log_info(f"Setting chat template: {chat_template}")
if hasattr(tokenizer, "chat_template"):
tokenizer.chat_template = chat_template
else:
log_info("Tokenizer does not support chat templates, using default formatting")
# Now load model with updated tokenizer
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=trust_remote_code,
revision=model_revision,
torch_dtype=torch.bfloat16 if get_config_value(config, "torch_dtype", "bfloat16") == "bfloat16" else torch.float16,
device_map="auto" if CUDA_AVAILABLE else None,
attn_implementation=use_attn_implementation
)
# Apply PEFT/LoRA if enabled but using standard loading
if peft_available and get_config_value(unsloth_config, "enabled", True):
log_info("Applying standard PEFT/LoRA configuration")
from peft import LoraConfig, get_peft_model
lora_r = get_config_value(unsloth_config, "r", 16)
lora_alpha = get_config_value(unsloth_config, "alpha", 32)
lora_dropout = get_config_value(unsloth_config, "dropout", 0)
target_modules = get_config_value(unsloth_config, "target_modules",
["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"])
log_info(f"Applying LoRA with r={lora_r}, alpha={lora_alpha}, dropout={lora_dropout}")
lora_config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
# Print model summary
log_info(f"Model loaded successfully: {model.__class__.__name__}")
if hasattr(model, "print_trainable_parameters"):
model.print_trainable_parameters()
else:
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
log_info(f"Model has {total_params:,} parameters, {trainable_params:,} trainable ({trainable_params/total_params:.2%})")
return model, tokenizer
except Exception as e:
log_info(f"Error loading model: {str(e)}")
traceback.print_exc()
return None, None
def load_dataset_with_mapping(config):
"""
Load dataset from Hugging Face or local files and apply necessary transformations.
Args:
config (dict): Dataset configuration dictionary
Returns:
Dataset: The loaded and processed dataset
"""
# Extract dataset configuration
dataset_info = get_config_value(config, "dataset", {})
dataset_name = get_config_value(dataset_info, "name", None)
dataset_split = get_config_value(dataset_info, "split", "train")
# Data formatting configuration
formatting_config = get_config_value(config, "data_formatting", {})
if not dataset_name:
raise ValueError("Dataset name not specified in config")
log_info(f"Loading dataset: {dataset_name} (split: {dataset_split})")
try:
# Load dataset from Hugging Face or local path
from datasets import load_dataset
# Check if it's a local path or Hugging Face dataset
if os.path.exists(dataset_name) or os.path.exists(os.path.join(os.getcwd(), dataset_name)):
log_info(f"Loading dataset from local path: {dataset_name}")
# Local dataset - check if it's a directory or file
if os.path.isdir(dataset_name):
# Directory - look for data files
dataset = load_dataset(
"json",
data_files={"train": os.path.join(dataset_name, "*.json")},
split=dataset_split
)
else:
# Single file
dataset = load_dataset(
"json",
data_files={"train": dataset_name},
split=dataset_split
)
else:
# Hugging Face dataset
log_info(f"Loading dataset from Hugging Face: {dataset_name}")
dataset = load_dataset(dataset_name, split=dataset_split)
log_info(f"Dataset loaded with {len(dataset)} examples")
# Check if dataset contains required fields
required_fields = ["conversations"]
missing_fields = [field for field in required_fields if field not in dataset.column_names]
if missing_fields:
log_info(f"WARNING: Dataset missing required fields: {missing_fields}")
log_info("Attempting to map dataset structure to required format")
# Implement conversion logic based on dataset structure
if "messages" in dataset.column_names:
log_info("Converting 'messages' field to 'conversations' format")
dataset = dataset.map(
lambda x: {"conversations": x["messages"]},
remove_columns=["messages"]
)
elif "text" in dataset.column_names:
log_info("Converting plain text to conversations format")
dataset = dataset.map(
lambda x: {"conversations": [{"role": "user", "content": x["text"]}]},
remove_columns=["text"]
)
else:
raise ValueError(f"Cannot convert dataset format - missing required fields and no conversion path available")
# Log dataset info
log_info(f"Dataset has {len(dataset)} examples and columns: {dataset.column_names}")
# Show a few examples for verification
for i in range(min(3, len(dataset))):
example = dataset[i]
log_info(f"Example {i}:")
for key, value in example.items():
if key == "conversations":
log_info(f" conversations: {len(value)} messages")
# Show first message only to avoid cluttering logs
if value and len(value) > 0:
first_msg = value[0]
if isinstance(first_msg, dict) and "content" in first_msg:
content = first_msg["content"]
log_info(f" First message: {content[:50]}..." if len(content) > 50 else f" First message: {content}")
else:
log_info(f" {key}: {value}")
return dataset
except Exception as e:
log_info(f"Error loading dataset: {str(e)}")
traceback.print_exc()
return None
def format_phi_chat(messages, dataset_config):
"""Format messages according to phi-4's chat template and dataset config.
Only formats the conversation structure, preserves the actual content."""
formatted_chat = ""
# Get role templates from config
roles = dataset_config.get("data_formatting", {}).get("roles", {
"system": "System: {content}\n\n",
"human": "Human: {content}\n\n",
"assistant": "Assistant: {content}\n\n"
})
# Handle each message in the conversation
for message in messages:
if not isinstance(message, dict) or "content" not in message:
logger.warning(f"Skipping invalid message format: {message}")
continue
content = message.get("content", "") # Don't strip() - preserve exact content
# Skip empty content
if not content:
continue
# Only add role prefixes based on position/content
if "[RESEARCH INTRODUCTION]" in content:
# System message
template = roles.get("system", "System: {content}\n\n")
formatted_chat = template.format(content=content) + formatted_chat
else:
# Alternate between human and assistant for regular conversation turns
# In phi-4 format, human messages come first, followed by assistant responses
if len(formatted_chat.split("Human:")) == len(formatted_chat.split("Assistant:")):
# If equal numbers of Human and Assistant messages, next is Human
template = roles.get("human", "Human: {content}\n\n")
else:
# Otherwise, next is Assistant
template = roles.get("assistant", "Assistant: {content}\n\n")
formatted_chat += template.format(content=content)
return formatted_chat
class SimpleDataCollator:
def __init__(self, tokenizer, dataset_config):
self.tokenizer = tokenizer
self.max_seq_length = min(dataset_config.get("max_seq_length", 2048), tokenizer.model_max_length)
self.stats = {
"processed": 0,
"skipped": 0,
"total_tokens": 0
}
logger.info(f"Initialized SimpleDataCollator with max_seq_length={self.max_seq_length}")
def __call__(self, features):
# Initialize tensors on CPU to save GPU memory
batch = {
"input_ids": [],
"attention_mask": [],
"labels": []
}
for feature in features:
paper_id = feature.get("article_id", "unknown")
prompt_num = feature.get("prompt_number", 0)
conversations = feature.get("conversations", [])
if not conversations:
logger.warning(f"No conversations for paper_id {paper_id}, prompt {prompt_num}")
self.stats["skipped"] += 1
continue
# Get the content directly
content = conversations[0].get("content", "")
if not content:
logger.warning(f"Empty content for paper_id {paper_id}, prompt {prompt_num}")
self.stats["skipped"] += 1
continue
# Process the content string by tokenizing it
if isinstance(content, str):
# Tokenize the content string
input_ids = self.tokenizer.encode(content, add_special_tokens=True)
else:
# If somehow the content is already tokenized (not a string), use it directly
input_ids = content
# Truncate if needed
if len(input_ids) > self.max_seq_length:
input_ids = input_ids[:self.max_seq_length]
logger.warning(f"Truncated sequence for paper_id {paper_id}, prompt {prompt_num}")
# Create attention mask (1s for all tokens)
attention_mask = [1] * len(input_ids)
# Add to batch
batch["input_ids"].append(input_ids)
batch["attention_mask"].append(attention_mask)
batch["labels"].append(input_ids.copy()) # For causal LM, labels = input_ids
self.stats["processed"] += 1
self.stats["total_tokens"] += len(input_ids)
# Log statistics periodically
if self.stats["processed"] % 100 == 0:
avg_tokens = self.stats["total_tokens"] / max(1, self.stats["processed"])
logger.info(f"Data collation stats: processed={self.stats['processed']}, "
f"skipped={self.stats['skipped']}, avg_tokens={avg_tokens:.1f}")
# Convert to tensors or pad sequences (PyTorch will handle)
if batch["input_ids"]:
# Pad sequences to max length in batch using the tokenizer
batch = self.tokenizer.pad(
batch,
padding="max_length",
max_length=self.max_seq_length,
return_tensors="pt"
)
return batch
else:
# Return empty batch if no valid examples
return {k: [] for k in batch}
def log_gpu_memory_usage(step=None, frequency=50, clear_cache_threshold=0.9, label=None):
"""
Log GPU memory usage statistics with optional cache clearing
Args:
step: Current training step (if None, logs regardless of frequency)
frequency: How often to log when step is provided
clear_cache_threshold: Fraction of memory used that triggers cache clearing (0-1)
label: Optional label for the log message (e.g., "Initial", "Error", "Step")
"""
if not CUDA_AVAILABLE:
return
# Only log every 'frequency' steps if step is provided
if step is not None and frequency > 0 and step % frequency != 0:
return
# Get memory usage for each GPU
memory_info = []
for i in range(NUM_GPUS):
allocated = torch.cuda.memory_allocated(i) / (1024 ** 2) # MB
reserved = torch.cuda.memory_reserved(i) / (1024 ** 2) # MB
max_mem = torch.cuda.max_memory_allocated(i) / (1024 ** 2) # MB
# Calculate percentage of reserved memory that's allocated
usage_percent = (allocated / reserved) * 100 if reserved > 0 else 0
memory_info.append(f"GPU {i}: {allocated:.1f}MB/{reserved:.1f}MB ({usage_percent:.1f}%, max: {max_mem:.1f}MB)")
# Automatically clear cache if over threshold
if clear_cache_threshold > 0 and reserved > 0 and (allocated / reserved) > clear_cache_threshold:
log_info(f"Clearing CUDA cache for GPU {i} - high utilization ({allocated:.1f}/{reserved:.1f}MB)")
with torch.cuda.device(i):
torch.cuda.empty_cache()
prefix = f"{label} " if label else ""
log_info(f"{prefix}GPU Memory: {', '.join(memory_info)}")
class LoggingCallback(TrainerCallback):
"""
Custom callback for logging training progress and metrics.
Provides detailed information about training status, GPU memory usage, and model performance.
"""
def __init__(self, model=None, dataset=None):
# Ensure we have TrainerCallback
try:
super().__init__()
except Exception as e:
# Try to import directly if initial import failed
try:
from transformers.trainer_callback import TrainerCallback
self.__class__.__bases__ = (TrainerCallback,)
super().__init__()
log_info("Successfully imported TrainerCallback directly")
except ImportError as ie:
log_info(f"❌ Error: Could not import TrainerCallback: {str(ie)}")
log_info("Please ensure transformers is properly installed")
raise
self.training_started = time.time()
self.last_log_time = time.time()
self.last_step_time = None
self.step_durations = []
self.best_loss = float('inf')
self.model = model
self.dataset = dataset
def on_train_begin(self, args, state, control, **kwargs):
"""Called at the beginning of training"""
try:
log_info(f"=== Training started at {time.strftime('%Y-%m-%d %H:%M:%S')} ===")
# Log model info if available
if self.model is not None:
total_params = sum(p.numel() for p in self.model.parameters())
trainable_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
log_info(f"Model parameters: {total_params/1e6:.2f}M total, {trainable_params/1e6:.2f}M trainable")
# Log dataset info if available
if self.dataset is not None:
log_info(f"Dataset size: {len(self.dataset)} examples")
# Log important training parameters for visibility
total_batch_size = args.per_device_train_batch_size * args.gradient_accumulation_steps * NUM_GPUS
total_steps = int(len(self.dataset or []) / (args.per_device_train_batch_size * NUM_GPUS * args.gradient_accumulation_steps) * args.num_train_epochs)
log_info(f"Training plan: {len(self.dataset or [])} examples over {args.num_train_epochs} epochs ≈ {total_steps} steps")
log_info(f"Batch size: {args.per_device_train_batch_size} × {args.gradient_accumulation_steps} steps × {NUM_GPUS} GPUs = {total_batch_size} total")
# Log initial GPU memory usage with label
log_gpu_memory_usage(label="Initial")
except Exception as e:
logger.warning(f"Error logging training begin statistics: {str(e)}")
def on_step_end(self, args, state, control, **kwargs):
"""Called at the end of each step"""
try:
if state.global_step == 1 or state.global_step % args.logging_steps == 0:
# Track step timing
current_time = time.time()
if self.last_step_time:
step_duration = current_time - self.last_step_time
self.step_durations.append(step_duration)
# Keep only last 100 steps for averaging
if len(self.step_durations) > 100:
self.step_durations.pop(0)
avg_step_time = sum(self.step_durations) / len(self.step_durations)
log_info(f"Step {state.global_step}: {step_duration:.2f}s (avg: {avg_step_time:.2f}s)")
self.last_step_time = current_time
# Log GPU memory usage with step number
log_gpu_memory_usage(state.global_step, args.logging_steps)
# Log loss
if state.log_history:
latest_logs = state.log_history[-1] if state.log_history else {}
if "loss" in latest_logs:
loss = latest_logs["loss"]
log_info(f"Step {state.global_step} loss: {loss:.4f}")
# Track best loss
if loss < self.best_loss:
self.best_loss = loss
log_info(f"New best loss: {loss:.4f}")
except Exception as e:
logger.warning(f"Error logging step end statistics: {str(e)}")
def on_train_end(self, args, state, control, **kwargs):
"""Called at the end of training"""
try:
# Calculate training duration
training_time = time.time() - self.training_started
hours, remainder = divmod(training_time, 3600)
minutes, seconds = divmod(remainder, 60)
log_info(f"=== Training completed at {time.strftime('%Y-%m-%d %H:%M:%S')} ===")
log_info(f"Training duration: {int(hours)}h {int(minutes)}m {int(seconds)}s")
log_info(f"Final step: {state.global_step}")
log_info(f"Best loss: {self.best_loss:.4f}")
# Log final GPU memory usage
log_gpu_memory_usage(label="Final")
except Exception as e:
logger.warning(f"Error logging training end statistics: {str(e)}")
# Other callback methods with proper error handling
def on_save(self, args, state, control, **kwargs):
"""Called when a checkpoint is saved"""
try:
log_info(f"Saving checkpoint at step {state.global_step}")
except Exception as e:
logger.warning(f"Error in on_save: {str(e)}")
def on_log(self, args, state, control, **kwargs):
"""Called when a log is created"""
pass
def on_evaluate(self, args, state, control, **kwargs):
"""Called when evaluation is performed"""
pass
# Only implement the methods we actually need, remove the others
def on_prediction_step(self, args, state, control, **kwargs):
"""Called when prediction is performed"""
pass
def on_save_model(self, args, state, control, **kwargs):
"""Called when model is saved"""
try:
# Log memory usage after saving
log_gpu_memory_usage(label=f"Save at step {state.global_step}")
except Exception as e:
logger.warning(f"Error in on_save_model: {str(e)}")
def on_epoch_end(self, args, state, control, **kwargs):
"""Called at the end of an epoch"""
try:
epoch = state.epoch
log_info(f"Completed epoch {epoch:.2f}")
log_gpu_memory_usage(label=f"Epoch {epoch:.2f}")
except Exception as e:
logger.warning(f"Error in on_epoch_end: {str(e)}")
def on_step_begin(self, args, state, control, **kwargs):
"""Called at the beginning of a step"""
pass
def install_flash_attention():
"""
Attempt to install Flash Attention for improved performance.
Returns True if installation was successful, False otherwise.
"""
log_info("Attempting to install Flash Attention...")
# Check for CUDA before attempting installation
if not CUDA_AVAILABLE:
log_info("❌ Cannot install Flash Attention: CUDA not available")
return False
try:
# Check CUDA version to determine correct installation command
cuda_version = torch.version.cuda
if cuda_version is None:
log_info("❌ Cannot determine CUDA version for Flash Attention installation")
return False
import subprocess
# Use --no-build-isolation for better compatibility
install_cmd = [
sys.executable,
"-m",
"pip",
"install",
"flash-attn",
"--no-build-isolation"
]
log_info(f"Running: {' '.join(install_cmd)}")
result = subprocess.run(
install_cmd,
capture_output=True,
text=True,
check=False
)
if result.returncode == 0:
log_info("✅ Flash Attention installed successfully!")
# Attempt to import to verify installation
try:
import flash_attn
log_info(f"✅ Flash Attention version {flash_attn.__version__} is now available")
return True
except ImportError:
log_info("⚠️ Flash Attention installed but import failed")
return False
else:
log_info(f"❌ Flash Attention installation failed with error: {result.stderr}")
return False
except Exception as e:
log_info(f"❌ Error installing Flash Attention: {str(e)}")
return False
def check_dependencies():
"""
Check for required and optional dependencies, ensuring proper versions and import order.
Returns True if all required dependencies are present, False otherwise.
"""
# Define required packages with versions and descriptions
required_packages = {
"unsloth": {"version": ">=2024.3", "feature": "fast 4-bit quantization and LoRA"},
"transformers": {"version": ">=4.38.0", "feature": "core model functionality"},
"peft": {"version": ">=0.9.0", "feature": "parameter-efficient fine-tuning"},
"accelerate": {"version": ">=0.27.0", "feature": "multi-GPU training"}
}
# Optional packages that enhance functionality
optional_packages = {
"flash_attn": {"feature": "faster attention computation"},
"bitsandbytes": {"feature": "quantization support"},
"optimum": {"feature": "model optimization"},
"wandb": {"feature": "experiment tracking"}
}
# Store results
missing_packages = []
package_versions = {}
order_issues = []
missing_optional = []
# Check required packages
log_info("Checking required dependencies...")
for package, info in required_packages.items():
version_req = info["version"]
feature = info["feature"]
try:
# Special handling for packages we've already checked
if package == "unsloth" and not unsloth_available:
missing_packages.append(f"{package}{version_req}")
log_info(f"❌ {package} - {feature} MISSING")
continue
elif package == "peft" and not peft_available:
missing_packages.append(f"{package}{version_req}")
log_info(f"❌ {package} - {feature} MISSING")
continue
# Try to import and get version
module = __import__(package)
version = getattr(module, "__version__", "unknown")
package_versions[package] = version
log_info(f"✅ {package} v{version} - {feature}")
except ImportError:
missing_packages.append(f"{package}{version_req}")
log_info(f"❌ {package} - {feature} MISSING")
# Check optional packages
log_info("\nChecking optional dependencies...")
for package, info in optional_packages.items():
feature = info["feature"]
try:
__import__(package)
log_info(f"✅ {package} - {feature} available")
except ImportError:
log_info(f"⚠️ {package} - {feature} not available")
missing_optional.append(package)
# Check import order for optimal performance
if "transformers" in package_versions and "unsloth" in package_versions:
try:
import sys
modules = list(sys.modules.keys())
transformers_idx = modules.index("transformers")
unsloth_idx = modules.index("unsloth")
if transformers_idx < unsloth_idx:
order_issue = "⚠️ For optimal performance, import unsloth before transformers"
order_issues.append(order_issue)
log_info(order_issue)
log_info("This might cause performance issues but won't prevent training")
else:
log_info("✅ Import order: unsloth before transformers (optimal)")
except (ValueError, IndexError) as e:
log_info(f"⚠️ Could not verify import order: {str(e)}")
# Try to install missing optional packages
if "flash_attn" in missing_optional and CUDA_AVAILABLE:
log_info("\nFlash Attention is missing but would improve performance.")
install_result = install_flash_attention()
if install_result:
missing_optional.remove("flash_attn")
# Report missing required packages
if missing_packages:
log_info("\n❌ Critical dependencies missing:")
for pkg in missing_packages:
log_info(f" - {pkg}")
log_info("Please install missing dependencies with:")
log_info(f" pip install {' '.join(missing_packages)}")
return False
log_info("\n✅ All required dependencies satisfied!")
return True
def get_config_value(config, path, default=None):
"""
Safely get a nested value from a config dictionary using a dot-separated path.
Args:
config: The configuration dictionary
path: Dot-separated path to the value (e.g., "training.optimizer.lr")
default: Default value to return if path doesn't exist
Returns:
The value at the specified path or the default value
"""
if not config:
return default
parts = path.split('.')
current = config
for part in parts:
if isinstance(current, dict) and part in current:
current = current[part]
else:
return default
return current
def update_huggingface_space():
"""Update the Hugging Face Space with the current code."""
log_info("Updating Hugging Face Space...")
update_script = os.path.join(os.path.dirname(os.path.abspath(__file__)), "update_space.py")
if not os.path.exists(update_script):
logger.warning(f"Update space script not found at {update_script}")
return False
try:
import subprocess
# Explicitly set space_name to ensure we're targeting the right Space
result = subprocess.run(
[sys.executable, update_script, "--force", "--space_name", "phi4training"],
capture_output=True, text=True, check=False
)
if result.returncode == 0:
log_info("Hugging Face Space updated successfully!")
log_info(f"Space URL: https://huggingface.co/spaces/George-API/phi4training")
return True
else:
logger.error(f"Failed to update Hugging Face Space: {result.stderr}")
return False
except Exception as e:
logger.error(f"Error updating Hugging Face Space: {str(e)}")
return False
def validate_huggingface_credentials():
"""Validate Hugging Face credentials to ensure they work correctly."""
if not os.environ.get("HF_TOKEN"):
logger.warning("HF_TOKEN not found. Skipping Hugging Face credentials validation.")
return False
try:
# Import here to avoid requiring huggingface_hub if not needed
from huggingface_hub import HfApi, login
# Try to login with the token
login(token=os.environ.get("HF_TOKEN"))
# Check if we can access the API
api = HfApi()
username = os.environ.get("HF_USERNAME", "George-API")
space_name = os.environ.get("HF_SPACE_NAME", "phi4training")
# Try to get whoami info
user_info = api.whoami()
logger.info(f"Successfully authenticated with Hugging Face as {user_info['name']}")
# Check if we're using the expected Space
expected_space_id = "George-API/phi4training"
actual_space_id = f"{username}/{space_name}"
if actual_space_id != expected_space_id:
logger.warning(f"Using Space '{actual_space_id}' instead of the expected '{expected_space_id}'")
logger.warning(f"Make sure this is intentional. To use the correct Space, update your .env file.")
else:
logger.info(f"Confirmed using Space: {expected_space_id}")
# Check if the space exists
try:
space_id = f"{username}/{space_name}"
space_info = api.space_info(repo_id=space_id)
logger.info(f"Space {space_id} is accessible at: https://huggingface.co/spaces/{space_id}")
return True
except Exception as e:
logger.warning(f"Could not access Space {username}/{space_name}: {str(e)}")
logger.warning("Space updating may not work correctly")
return False
except ImportError:
logger.warning("huggingface_hub not installed. Cannot validate Hugging Face credentials.")
return False
except Exception as e:
logger.warning(f"Error validating Hugging Face credentials: {str(e)}")
return False
def setup_environment(args):
"""
Set up the training environment including logging, seed, and configurations.
Args:
args: Command line arguments
Returns:
tuple: (transformers_config, seed) - The loaded configuration and random seed
"""
# Load environment variables first
load_env_variables()
# Set random seed for reproducibility
seed = args.seed if args.seed is not None else int(time.time()) % 10000
set_seed(seed)
log_info(f"Using random seed: {seed}")
# Load configuration
base_path = os.path.dirname(os.path.abspath(__file__))
config_file = args.config_file or os.path.join(base_path, "transformers_config.json")
if not os.path.exists(config_file):
raise FileNotFoundError(f"Config file not found: {config_file}")
log_info(f"Loading configuration from {config_file}")
transformers_config = load_configs(config_file)
# Set up hardware environment variables if CUDA is available
if CUDA_AVAILABLE:
memory_fraction = get_config_value(transformers_config, "hardware.system_settings.cuda_memory_fraction", 0.75)
if memory_fraction < 1.0:
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = f"max_split_size_mb:128,expandable_segments:True"
log_info(f"Set CUDA memory allocation limit to expandable with max_split_size_mb:128")
# Check dependencies and install optional ones if needed
if not check_dependencies():
raise RuntimeError("Critical dependencies missing")
# Check if flash attention was successfully installed
flash_attention_available = False
try:
import flash_attn
flash_attention_available = True
log_info(f"Flash Attention will be used (version: {flash_attn.__version__})")
# Update config to use flash attention
if "use_flash_attention" not in transformers_config:
transformers_config["use_flash_attention"] = True
except ImportError:
log_info("Flash Attention not available, will use standard attention mechanism")
return transformers_config, seed
def setup_model_and_tokenizer(config):
"""
Load and configure the model and tokenizer.
Args:
config (dict): Complete configuration dictionary
Returns:
tuple: (model, tokenizer) - The loaded model and tokenizer
"""
# Extract model configuration
model_config = get_config_value(config, "model", {})
model_name = get_config_value(model_config, "name", "unsloth/phi-4-unsloth-bnb-4bit")
use_fast_tokenizer = get_config_value(model_config, "use_fast_tokenizer", True)
trust_remote_code = get_config_value(model_config, "trust_remote_code", True)
model_revision = get_config_value(config, "model_revision", "main")
# Detect if model is already pre-quantized (includes '4bit', 'bnb', or 'int4' in name)
is_prequantized = any(q in model_name.lower() for q in ['4bit', 'bnb', 'int4', 'quant'])
if is_prequantized:
log_info("⚠️ Detected pre-quantized model. No additional quantization will be applied.")
# Unsloth configuration
unsloth_config = get_config_value(config, "unsloth", {})
unsloth_enabled = get_config_value(unsloth_config, "enabled", True)
# Tokenizer configuration
tokenizer_config = get_config_value(config, "tokenizer", {})
max_seq_length = min(
get_config_value(tokenizer_config, "max_seq_length", 2048),
4096 # Maximum supported by most models
)
add_eos_token = get_config_value(tokenizer_config, "add_eos_token", True)
chat_template = get_config_value(tokenizer_config, "chat_template", None)
padding_side = get_config_value(tokenizer_config, "padding_side", "right")
# Check for flash attention
use_flash_attention = get_config_value(config, "use_flash_attention", False)
flash_attention_available = False
try:
import flash_attn
flash_attention_available = True
log_info(f"Flash Attention detected (version: {flash_attn.__version__})")
except ImportError:
if use_flash_attention:
log_info("Flash Attention requested but not available")
log_info(f"Loading model: {model_name} (revision: {model_revision})")
log_info(f"Max sequence length: {max_seq_length}")
try:
if unsloth_enabled and unsloth_available:
log_info("Using Unsloth for LoRA fine-tuning")
if is_prequantized:
log_info("Using pre-quantized model - no additional quantization will be applied")
else:
log_info("Using 4-bit quantization for efficient training")
# Load using Unsloth
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=max_seq_length,
dtype=get_config_value(config, "torch_dtype", "bfloat16"),
revision=model_revision,
trust_remote_code=trust_remote_code,
use_flash_attention_2=use_flash_attention and flash_attention_available
)
# Configure tokenizer settings
tokenizer.padding_side = padding_side
if add_eos_token and tokenizer.eos_token is None:
log_info("Setting EOS token")
tokenizer.add_special_tokens({"eos_token": "</s>"})
# Set chat template if specified
if chat_template:
log_info(f"Setting chat template: {chat_template}")
if hasattr(tokenizer, "chat_template"):
tokenizer.chat_template = chat_template
else:
log_info("Tokenizer does not support chat templates, using default formatting")
# Apply LoRA
lora_r = get_config_value(unsloth_config, "r", 16)
lora_alpha = get_config_value(unsloth_config, "alpha", 32)
lora_dropout = get_config_value(unsloth_config, "dropout", 0)
target_modules = get_config_value(unsloth_config, "target_modules",
["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"])
log_info(f"Applying LoRA with r={lora_r}, alpha={lora_alpha}, dropout={lora_dropout}")
model = FastLanguageModel.get_peft_model(
model,
r=lora_r,
target_modules=target_modules,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
bias="none",
use_gradient_checkpointing=get_config_value(config, "training.gradient_checkpointing", True),
random_state=0,
max_seq_length=max_seq_length,
modules_to_save=None
)
if use_flash_attention and flash_attention_available:
log_info("🚀 Using Flash Attention for faster training")
elif use_flash_attention and not flash_attention_available:
log_info("⚠️ Flash Attention requested but not available - using standard attention")
else:
# Standard HuggingFace loading
log_info("Using standard HuggingFace model loading (Unsloth not available or disabled)")
from transformers import AutoModelForCausalLM, AutoTokenizer
# Check if flash attention should be enabled in config
use_attn_implementation = None
if use_flash_attention and flash_attention_available:
use_attn_implementation = "flash_attention_2"
log_info("🚀 Using Flash Attention for faster training")
# Load tokenizer first
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=trust_remote_code,
use_fast=use_fast_tokenizer,
revision=model_revision,
padding_side=padding_side
)
# Configure tokenizer settings
if add_eos_token and tokenizer.eos_token is None:
log_info("Setting EOS token")
tokenizer.add_special_tokens({"eos_token": "</s>"})
# Set chat template if specified
if chat_template:
log_info(f"Setting chat template: {chat_template}")
if hasattr(tokenizer, "chat_template"):
tokenizer.chat_template = chat_template
else:
log_info("Tokenizer does not support chat templates, using default formatting")
# Only apply quantization config if model is not already pre-quantized
quantization_config = None
if not is_prequantized and CUDA_AVAILABLE:
try:
from transformers import BitsAndBytesConfig
log_info("Using 4-bit quantization (BitsAndBytes) for efficient training")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True
)
except ImportError:
log_info("BitsAndBytes not available - quantization disabled")
# Now load model with updated tokenizer
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=trust_remote_code,
revision=model_revision,
torch_dtype=torch.bfloat16 if get_config_value(config, "torch_dtype", "bfloat16") == "bfloat16" else torch.float16,
device_map="auto" if CUDA_AVAILABLE else None,
attn_implementation=use_attn_implementation,
quantization_config=quantization_config
)
# Apply PEFT/LoRA if enabled but using standard loading
if peft_available and get_config_value(unsloth_config, "enabled", True):
log_info("Applying standard PEFT/LoRA configuration")
from peft import LoraConfig, get_peft_model
lora_r = get_config_value(unsloth_config, "r", 16)
lora_alpha = get_config_value(unsloth_config, "alpha", 32)
lora_dropout = get_config_value(unsloth_config, "dropout", 0)
target_modules = get_config_value(unsloth_config, "target_modules",
["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"])
log_info(f"Applying LoRA with r={lora_r}, alpha={lora_alpha}, dropout={lora_dropout}")
lora_config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
# Print model summary
log_info(f"Model loaded successfully: {model.__class__.__name__}")
if hasattr(model, "print_trainable_parameters"):
model.print_trainable_parameters()
else:
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
log_info(f"Model has {total_params:,} parameters, {trainable_params:,} trainable ({trainable_params/total_params:.2%})")
return model, tokenizer
except Exception as e:
log_info(f"Error loading model: {str(e)}")
traceback.print_exc()
return None, None
def setup_dataset_and_collator(config, tokenizer):
"""
Load and configure the dataset and data collator.
Args:
config: Complete configuration dictionary
tokenizer: The tokenizer for the data collator
Returns:
tuple: (dataset, data_collator) - The loaded dataset and configured data collator
"""
dataset_config = get_config_value(config, "dataset", {})
log_info("Loading dataset...")
dataset = load_dataset_with_mapping(dataset_config)
# Validate dataset
if dataset is None:
raise ValueError("Dataset is None! Cannot proceed with training.")
if not hasattr(dataset, '__len__') or len(dataset) == 0:
raise ValueError("Dataset is empty! Cannot proceed with training.")
log_info(f"Dataset loaded with {len(dataset)} examples")
# Create data collator
data_collator = SimpleDataCollator(tokenizer, dataset_config)
return dataset, data_collator
def create_training_arguments(config, dataset):
"""
Create and configure training arguments for the Trainer.
Args:
config: Complete configuration dictionary
dataset: The dataset to determine total steps
Returns:
TrainingArguments: Configured training arguments
"""
# Extract configuration sections
training_config = get_config_value(config, "training", {})
hardware_config = get_config_value(config, "hardware", {})
huggingface_config = get_config_value(config, "huggingface_hub", {})
distributed_config = get_config_value(config, "distributed_training", {})
# Extract key training parameters
per_device_batch_size = get_config_value(training_config, "per_device_train_batch_size", 4)
gradient_accumulation_steps = get_config_value(training_config, "gradient_accumulation_steps", 8)
learning_rate = get_config_value(training_config, "learning_rate", 2e-5)
num_train_epochs = get_config_value(training_config, "num_train_epochs", 3)
# Extract hardware settings
dataloader_workers = get_config_value(hardware_config, "system_settings.dataloader_num_workers",
get_config_value(distributed_config, "dataloader_num_workers", 2))
pin_memory = get_config_value(hardware_config, "system_settings.dataloader_pin_memory", True)
# BF16/FP16 settings - ensure only one is enabled
use_bf16 = get_config_value(training_config, "bf16", False)
use_fp16 = get_config_value(training_config, "fp16", False) if not use_bf16 else False
# Configure distributed training
fsdp_config = get_config_value(distributed_config, "fsdp_config", {})
fsdp_enabled = get_config_value(fsdp_config, "enabled", False)
ddp_config = get_config_value(distributed_config, "ddp_config", {})
ddp_find_unused_parameters = get_config_value(ddp_config, "find_unused_parameters", False)
# Set up FSDP args if enabled
fsdp_args = None
if fsdp_enabled and NUM_GPUS > 1:
from accelerate import FullyShardedDataParallelPlugin
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullOptimStateDictConfig, FullStateDictConfig
)
fsdp_plugin = FullyShardedDataParallelPlugin(
sharding_strategy=get_config_value(fsdp_config, "sharding_strategy", "FULL_SHARD"),
mixed_precision_policy=get_config_value(fsdp_config, "mixed_precision", "BF16"),
state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=True),
optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=True),
)
fsdp_args = {
"fsdp": fsdp_plugin,
"fsdp_transformer_layer_cls_to_wrap": ["LlamaDecoderLayer", "PhiDecoderLayer"]
}
# Create and return training arguments
training_args = TrainingArguments(
output_dir=get_config_value(config, "checkpointing.output_dir", "./results"),
overwrite_output_dir=True,
num_train_epochs=num_train_epochs,
per_device_train_batch_size=per_device_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
learning_rate=learning_rate,
weight_decay=get_config_value(training_config, "weight_decay", 0.01),
max_grad_norm=get_config_value(training_config, "max_grad_norm", 1.0),
warmup_ratio=get_config_value(training_config, "warmup_ratio", 0.03),
lr_scheduler_type=get_config_value(training_config, "lr_scheduler_type", "cosine"),
logging_steps=get_config_value(training_config, "logging_steps", 10),
save_strategy=get_config_value(config, "checkpointing.save_strategy", "steps"),
save_steps=get_config_value(config, "checkpointing.save_steps", 500),
save_total_limit=get_config_value(config, "checkpointing.save_total_limit", 3),
bf16=use_bf16,
fp16=use_fp16,
push_to_hub=get_config_value(huggingface_config, "push_to_hub", False),
hub_model_id=get_config_value(huggingface_config, "hub_model_id", None),
hub_strategy=get_config_value(huggingface_config, "hub_strategy", "every_save"),
hub_private_repo=get_config_value(huggingface_config, "hub_private_repo", True),
gradient_checkpointing=get_config_value(training_config, "gradient_checkpointing", True),
dataloader_pin_memory=pin_memory,
optim=get_config_value(training_config, "optim", "adamw_torch"),
ddp_find_unused_parameters=ddp_find_unused_parameters,
dataloader_drop_last=False,
dataloader_num_workers=dataloader_workers,
no_cuda=False if CUDA_AVAILABLE else True,
**({} if fsdp_args is None else fsdp_args)
)
log_info("Training arguments created successfully")
return training_args
def configure_custom_dataloader(trainer, dataset, config, training_args):
"""
Configure a custom dataloader for the trainer if needed.
Args:
trainer: The Trainer instance to configure
dataset: The dataset to use
config: Complete configuration dictionary
training_args: The training arguments
Returns:
None (modifies trainer in-place)
"""
dataset_config = get_config_value(config, "dataset", {})
# Check if we need a custom dataloader
if get_config_value(dataset_config, "data_loading.sequential_processing", True):
log_info("Using custom sequential dataloader")
# Create sequential sampler to maintain dataset order
sequential_sampler = torch.utils.data.SequentialSampler(dataset)
log_info("Sequential sampler created")
# Define custom dataloader getter
def custom_get_train_dataloader():
"""Create a custom dataloader that maintains dataset order"""
# Get configuration values
batch_size = training_args.per_device_train_batch_size
drop_last = get_config_value(dataset_config, "data_loading.drop_last", False)
num_workers = training_args.dataloader_num_workers
pin_memory = training_args.dataloader_pin_memory
prefetch_factor = get_config_value(dataset_config, "data_loading.prefetch_factor", 2)
persistent_workers = get_config_value(dataset_config, "data_loading.persistent_workers", False)
# Create DataLoader with sequential sampler
return DataLoader(
dataset,
batch_size=batch_size,
sampler=sequential_sampler,
collate_fn=trainer.data_collator,
drop_last=drop_last,
num_workers=num_workers,
pin_memory=pin_memory,
prefetch_factor=prefetch_factor if num_workers > 0 else None,
persistent_workers=persistent_workers if num_workers > 0 else False,
)
# Override the default dataloader
trainer.get_train_dataloader = custom_get_train_dataloader
def run_training(trainer, tokenizer, training_args):
"""
Run the training process and handle model saving.
Args:
trainer: Configured Trainer instance
tokenizer: The tokenizer to save with the model
training_args: Training arguments
Returns:
int: 0 for success, 1 for failure
"""
log_info("Starting training...")
trainer.train()
log_info("Training complete! Saving final model...")
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir)
# Push to Hub if configured
if training_args.push_to_hub:
log_info(f"Pushing model to Hugging Face Hub: {training_args.hub_model_id}")
trainer.push_to_hub()
log_info("Training completed successfully!")
return 0
def main():
"""
Main entry point for the training script.
Returns:
int: 0 for success, non-zero for failure
"""
# Set up logging
logger.info("Starting training process")
try:
# Verify critical imports are available
if not transformers_available:
log_info("❌ Error: transformers library not available. Please install it with: pip install transformers")
return 1
# Check for required classes
for required_class in ["Trainer", "TrainingArguments", "TrainerCallback"]:
if not hasattr(transformers, required_class):
log_info(f"❌ Error: {required_class} not found in transformers. Please update transformers.")
return 1
# Check for potential import order issue and warn early
if "transformers" in sys.modules and "unsloth" in sys.modules:
if list(sys.modules.keys()).index("transformers") < list(sys.modules.keys()).index("unsloth"):
log_info("⚠️ Warning: transformers was imported before unsloth. This may affect performance.")
log_info(" For optimal performance in future runs, import unsloth first.")
# Parse command line arguments
args = parse_args()
# Set up environment and load configuration
transformers_config, seed = setup_environment(args)
# Load model and tokenizer
try:
model, tokenizer = setup_model_and_tokenizer(transformers_config)
except Exception as e:
logger.error(f"Error setting up model: {str(e)}")
return 1
# Load dataset and create data collator
try:
dataset, data_collator = setup_dataset_and_collator(transformers_config, tokenizer)
except Exception as e:
logger.error(f"Error setting up dataset: {str(e)}")
return 1
# Configure training arguments
try:
training_args = create_training_arguments(transformers_config, dataset)
except Exception as e:
logger.error(f"Error configuring training arguments: {str(e)}")
return 1
# Initialize trainer with callbacks
log_info("Initializing Trainer")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
data_collator=data_collator,
callbacks=[LoggingCallback(model=model, dataset=dataset)],
)
# Configure custom dataloader if needed
try:
configure_custom_dataloader(trainer, dataset, transformers_config, training_args)
except Exception as e:
logger.error(f"Error configuring custom dataloader: {str(e)}")
return 1
# Run training process
try:
return run_training(trainer, tokenizer, training_args)
except Exception as e:
logger.error(f"Training failed with error: {str(e)}")
# Log GPU memory for debugging
log_gpu_memory_usage(label="Error")
# Print full stack trace
traceback.print_exc()
return 1
except Exception as e:
logger.error(f"Error in main function: {str(e)}")
traceback.print_exc()
return 1
if __name__ == "__main__":
sys.exit(main())
|