hf-train-frontend / fixed_run_transformers_training.py
George-API's picture
Upload folder using huggingface_hub
5a7635c verified
def format_phi_chat(messages, dataset_config):
"""Format messages according to phi-4's chat template and dataset config."""
formatted_chat = ""
# Get role templates from config
roles = dataset_config.get("data_formatting", {}).get("roles", {
"system": "System: {content}\n\n",
"human": "Human: {content}\n\n",
"user": "Human: {content}\n\n",
"assistant": "Assistant: {content}\n\n"
})
# Handle research introduction metadata first
metadata = next((msg for msg in messages if isinstance(msg, dict) and
"[RESEARCH INTRODUCTION]" in msg.get("content", "")), None)
if metadata:
system_template = roles.get("system", "System: {content}\n\n")
formatted_chat = system_template.format(content=metadata['content'])
messages = [msg for msg in messages if msg != metadata]
# Process remaining messages
for message in messages:
if not isinstance(message, dict) or "content" not in message:
logger.warning(f"Skipping invalid message format: {message}")
continue
role = message.get("role", "").lower()
content = message.get("content", "")
# Format based on role
if role == "human" or role == "user":
template = roles.get("user", roles.get("human", "Human: {content}\n\n"))
formatted_chat += template.format(content=content)
elif role == "assistant" or role == "bot":
template = roles.get("assistant", "Assistant: {content}\n\n")
formatted_chat += template.format(content=content)
elif role == "system":
# For system messages, prepend them
template = roles.get("system", "System: {content}\n\n")
formatted_chat = template.format(content=content) + formatted_chat
else:
# Default to system for unknown roles
logger.warning(f"Unknown role '{role}' - treating as system message")
template = roles.get("system", "System: {content}\n\n")
formatted_chat += template.format(content=content)
return formatted_chat.strip()
class SimpleDataCollator:
def __init__(self, tokenizer, dataset_config):
self.tokenizer = tokenizer
self.dataset_config = dataset_config
self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0}
self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
self.max_seq_length = dataset_config.get("dataset", {}).get("processing", {}).get("max_seq_length", 2048)
logger.info(f"SimpleDataCollator initialized - using pre-audited dataset with max_seq_length={self.max_seq_length}")
logger.info("Using exact dataset structure without reformatting")
# Check if we're on GPU
self.device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"SimpleDataCollator using device: {self.device}")
def __call__(self, features):
"""Process examples preserving exact JSONL structure"""
batch = {"input_ids": [], "attention_mask": [], "labels": []}
for example in features:
try:
# Get ID
paper_id = example.get("id", "")
# Get conversations - these should already contain role and content
conversations = example.get("conversations", [])
if not conversations:
self.stats["skipped"] += 1
continue
# Directly use the conversations array as input to the model's chat template
# This preserves the exact structure with roles and content as they are
try:
# Let tokenizer handle the content with the model's chat template
inputs = self.tokenizer.apply_chat_template(
conversations,
return_tensors=None,
add_generation_prompt=False
)
except Exception as chat_error:
# Fallback if apply_chat_template fails
logger.warning(f"Chat template application failed for example {paper_id}: {str(chat_error)[:100]}")
# Create a basic representation of the conversation
conversation_text = ""
for msg in conversations:
if isinstance(msg, dict) and 'content' in msg:
conversation_text += msg.get('content', '') + "\n\n"
# Basic tokenization
inputs = self.tokenizer(
conversation_text,
add_special_tokens=True,
return_tensors=None
)
# Apply length cap if needed (shouldn't be necessary for pre-audited data)
if self.max_seq_length > 0 and len(inputs) > self.max_seq_length:
logger.warning(f"Example {paper_id} exceeds max_seq_length ({len(inputs)} > {self.max_seq_length})")
inputs = inputs[:self.max_seq_length]
# Create attention mask (1 for all tokens)
attention_mask = [1] * len(inputs)
if len(inputs) > 0:
# For causal language modeling, labels are the same as inputs
labels = inputs.copy()
batch["input_ids"].append(inputs)
batch["attention_mask"].append(attention_mask)
batch["labels"].append(labels)
self.stats["processed"] += 1
self.stats["total_tokens"] += len(inputs)
# Debug logging for first few examples
log_samples = self.dataset_config.get("validation", {}).get("log_samples", 3)
if self.stats["processed"] <= log_samples:
logger.info(f"Example {self.stats['processed']}:")
logger.info(f"Paper ID: {paper_id}")
logger.info(f"Token count: {len(inputs)}")
logger.info(f"Conversation entries: {len(conversations)}")
else:
self.stats["skipped"] += 1
except Exception as e:
logger.warning(f"Error processing example: {str(e)[:100]}...")
logger.warning(f"Problematic example ID: {example.get('id', 'unknown')}")
self.stats["skipped"] += 1
continue
if not batch["input_ids"]:
logger.warning("Empty batch, returning dummy tensors")
return {
"input_ids": torch.zeros((1, 1), dtype=torch.long),
"attention_mask": torch.zeros((1, 1), dtype=torch.long),
"labels": torch.zeros((1, 1), dtype=torch.long)
}
# Pad the batch
max_length = max(len(ids) for ids in batch["input_ids"])
for i in range(len(batch["input_ids"])):
padding_length = max_length - len(batch["input_ids"][i])
if padding_length > 0:
batch["input_ids"][i].extend([self.pad_token_id] * padding_length)
batch["attention_mask"][i].extend([0] * padding_length)
batch["labels"][i].extend([-100] * padding_length)
# Convert to tensors
batch = {k: torch.tensor(v, dtype=torch.long) for k, v in batch.items()}
# Log stats periodically
log_interval = self.dataset_config.get("validation", {}).get("log_interval", 100)
if self.stats["processed"] % log_interval == 0 and self.stats["processed"] > 0:
logger.info(f"Data collator stats: processed={self.stats['processed']}, "
f"skipped={self.stats['skipped']}, "
f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}")
return batch
class LoggingCallback(TrainerCallback):
def __init__(self):
self.last_log_time = time.time()
self.last_memory_log_time = time.time()
def on_step_end(self, args, state, control, **kwargs):
# Log every 50 steps or every 5 minutes, whichever comes first
current_time = time.time()
# Log loss every 50 steps or 5 minutes
if (state.global_step % 50 == 0) or (current_time - self.last_log_time > 300):
if state.log_history:
loss = state.log_history[-1].get('loss', 'N/A')
# Use simple formatting for better HF Space log compatibility
log_info(f"Step {state.global_step}: Loss {loss}")
else:
log_info(f"Step {state.global_step}: No loss data available")
self.last_log_time = current_time
# Log memory usage every 15 minutes
if current_time - self.last_memory_log_time > 900: # 15 minutes
if torch.cuda.is_available():
memory_info = []
for i in range(torch.cuda.device_count()):
allocated = torch.cuda.memory_allocated(i) / 1024**2
reserved = torch.cuda.memory_reserved(i) / 1024**2
memory_info.append(f"GPU {i}: {allocated:.1f}MB/{reserved:.1f}MB")
# Log in compact format for better visibility
log_info(f"Memory usage - {', '.join(memory_info)}")
self.last_memory_log_time = current_time
def on_train_begin(self, args, state, control, **kwargs):
log_info("=== Training is starting ===")
# Log important training parameters for visibility
effective_batch_size = args.per_device_train_batch_size * args.gradient_accumulation_steps * max(1, torch.cuda.device_count())
log_info(f"Per device batch size: {args.per_device_train_batch_size}")
log_info(f"Gradient accumulation steps: {args.gradient_accumulation_steps}")
log_info(f"Number of GPUs: {max(1, torch.cuda.device_count())}")
log_info(f"Total effective batch size: {effective_batch_size}")
log_info(f"Learning rate: {args.learning_rate}")
log_info(f"Epochs: {args.num_train_epochs}")
# Log dataset information
if hasattr(trainer, 'train_dataset') and trainer.train_dataset is not None:
log_info(f"Dataset size: {len(trainer.train_dataset)} examples")
if len(trainer.train_dataset) > 0:
try:
# Log first few prompt numbers to verify sequence
prompt_numbers = []
for i in range(min(5, len(trainer.train_dataset))):
if 'prompt_number' in trainer.train_dataset[i]:
prompt_numbers.append(trainer.train_dataset[i]['prompt_number'])
if prompt_numbers:
log_info(f"First few prompt numbers: {prompt_numbers}")
except Exception as e:
log_info(f"Error accessing dataset samples: {e}")
# Log memory information in compact format
if torch.cuda.is_available():
memory_info = []
for i in range(torch.cuda.device_count()):
allocated = torch.cuda.memory_allocated(i) / 1024**2
max_mem = torch.cuda.max_memory_allocated(i) / 1024**2
memory_info.append(f"GPU {i}: {allocated:.1f}MB (max: {max_mem:.1f}MB)")
log_info(f"Initial memory usage - {', '.join(memory_info)}")
def on_train_end(self, args, state, control, **kwargs):
log_info("=== Training completed ===")
if torch.cuda.is_available():
memory_info = []
for i in range(torch.cuda.device_count()):
allocated = torch.cuda.memory_allocated(i) / 1024**2
max_mem = torch.cuda.max_memory_allocated(i) / 1024**2
memory_info.append(f"GPU {i}: {allocated:.1f}MB (max: {max_mem:.1f}MB)")
log_info(f"Final memory usage - {', '.join(memory_info)}")
log_info(f"Total steps: {state.global_step}")
log_info(f"Final loss: {state.log_history[-1].get('loss', 'N/A') if state.log_history else 'N/A'}")
def custom_get_train_dataloader():
"""Custom dataloader that preserves original dataset order"""
log_info("Creating sequential dataloader to maintain original dataset order")
# Create a simple sequential sampler
sequential_sampler = torch.utils.data.SequentialSampler(dataset)
# Verify shuffle is disabled
data_loading_config = dataset_config.get("data_loading", {})
shuffle_enabled = data_loading_config.get("shuffle", False)
if shuffle_enabled:
log_info("CRITICAL ERROR: Shuffle is enabled! This will randomize data entry order!")
raise ValueError("Dataset shuffling is enabled but sequential processing is required. " +
"Please disable shuffling in your configuration.")
# Log our sequential processing approach
log_info("Using SequentialSampler to guarantee original dataset order is preserved")
log_info("Data order preservation is critical for proper training sequence")
# Calculate batch size based on device availability
if getattr(training_args, "no_cuda", False):
batch_size = training_args.per_device_train_batch_size
else:
batch_size = max(training_args.per_device_train_batch_size * max(1, NUM_GPUS), 1)
log_info(f"Using sequential sampler with batch size {batch_size}")
# Return DataLoader with sequential sampler
return torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
sampler=sequential_sampler,
collate_fn=data_collator,
drop_last=training_args.dataloader_drop_last,
num_workers=training_args.dataloader_num_workers,
pin_memory=training_args.dataloader_pin_memory,
)
def check_dependencies():
"""Check for critical dependencies and provide useful warnings."""
# Check for flash attention without attempting import
flash_attention_available = False
try:
import importlib.util
if importlib.util.find_spec("flash_attn") is not None:
flash_attention_available = True
log_info("flash-attn found! Using Flash Attention for faster training.")
else:
log_info("flash-attn not found. Training will continue but may be slower.")
log_info("To use flash attention, install: pip install flash-attn==2.5.2 --no-build-isolation")
# Still continue as this is optional
except Exception as e:
log_info(f"Error checking for flash-attn: {e}")
# Check for torch CUDA
if not torch.cuda.is_available():
log_info("WARNING: CUDA not available. Training will be extremely slow on CPU!")
else:
log_info(f"Found {torch.cuda.device_count()} CUDA devices")
# Check for unsloth
unsloth_available = False
try:
import importlib.util
if importlib.util.find_spec("unsloth") is not None:
unsloth_available = True
log_info("Unsloth found! Using Unsloth for optimized training.")
else:
log_info("CRITICAL: Unsloth not found. This pipeline requires Unsloth.")
log_info("Install with: pip install unsloth>=2024.3")
return False
except Exception as e:
log_info(f"Error checking for unsloth: {e}")
return False
return True
def main():
"""Main training function with error handling."""
try:
# Initialize logging
log_info("Starting Phi-4 training process")
# Parse arguments
args = parse_args()
# Load environment variables
load_env_variables()
# Load config from file
config = load_configs(args.config)
# Extract specific configurations
hardware_config = config.get("hardware", {})
dataset_config = config.get("dataset", {})
# Define multi_gpu_strategy early to prevent undefined errors
multi_gpu_strategy = hardware_config.get("training_optimizations", {}).get("multi_gpu_strategy", "data_parallel")
log_info(f"Multi-GPU strategy: {multi_gpu_strategy}")
# Check dependencies
if not check_dependencies():
log_info("Aborting due to missing critical dependencies")
return 1
# Log hardware info
cuda_available = torch.cuda.is_available()
num_gpus = torch.cuda.device_count() if cuda_available else 0
log_info(f"Hardware: {num_gpus} GPUs detected" if cuda_available else "Hardware: CPU only")
# Rest of training code would go here
# ...
return 0
except Exception as e:
log_info(f"Error in main training loop: {str(e)}")
# Log CUDA memory if available
if torch.cuda.is_available():
try:
memory_info = []
for i in range(torch.cuda.device_count()):
allocated = torch.cuda.memory_allocated(i) / 1024**2
reserved = torch.cuda.memory_reserved(i) / 1024**2
memory_info.append(f"GPU {i}: {allocated:.1f}MB/{reserved:.1f}MB")
log_info(f"GPU memory at failure: {', '.join(memory_info)}")
except:
pass
return 1
if __name__ == "__main__":
import sys
sys.exit(main())