Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- run_transformers_training.py +240 -69
run_transformers_training.py
CHANGED
@@ -285,7 +285,7 @@ def load_model_and_tokenizer(config):
|
|
285 |
raise
|
286 |
|
287 |
def load_dataset_with_mapping(dataset_config):
|
288 |
-
"""Load and
|
289 |
try:
|
290 |
# Load dataset
|
291 |
dataset_name = dataset_config.get("dataset", {}).get("name", "")
|
@@ -319,6 +319,45 @@ def load_dataset_with_mapping(dataset_config):
|
|
319 |
if source != target: # Only rename if names are different
|
320 |
dataset = dataset.rename_column(source, target)
|
321 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
# Verify expected columns exist
|
323 |
expected_columns = {"id", "conversations"}
|
324 |
for col in expected_columns:
|
@@ -369,40 +408,105 @@ def load_dataset_with_mapping(dataset_config):
|
|
369 |
|
370 |
# Verify the IDs are in sequential order if they're numeric
|
371 |
try:
|
372 |
-
if len(dataset) > 1
|
373 |
-
|
374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
|
376 |
-
# Check if
|
377 |
-
if
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
logger.warning("WARNING: Sample IDs are not in sequential order.")
|
382 |
logger.warning("This may indicate that data sequence is not preserved.")
|
383 |
else:
|
384 |
-
logger.info("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
except Exception as e:
|
386 |
logger.warning(f"Could not verify sequential integrity: {e}")
|
387 |
|
388 |
-
# Log examples without printing full content
|
389 |
if "conversations" in dataset.column_names:
|
390 |
-
|
391 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
logger.info(f"Dataset loaded successfully with {len(dataset)} examples")
|
408 |
logger.info(f"Dataset columns: {dataset.column_names}")
|
@@ -597,39 +701,88 @@ class LoggingCallback(TrainerCallback):
|
|
597 |
if self.verify_sequence is True and state.global_step % 100 == 0 and self.sequence_samples:
|
598 |
try:
|
599 |
# Get a batch of data without disturbing the training
|
600 |
-
|
601 |
-
if
|
602 |
-
log_info("
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
# Compare current samples with our reference samples from training start
|
609 |
-
is_sequence_maintained = True
|
610 |
-
for i, (orig_idx, orig_sample) in enumerate(zip(self.sample_indices, self.sequence_samples)):
|
611 |
-
# Check if sample IDs still match our reference
|
612 |
-
if orig_idx < len(current_samples):
|
613 |
-
current_sample = current_samples[i]
|
614 |
-
|
615 |
-
# Compare IDs if available
|
616 |
-
if 'id' in orig_sample and 'id' in current_sample:
|
617 |
-
if orig_sample['id'] != current_sample['id']:
|
618 |
-
log_info(f"WARNING: Sequence integrity compromised! Sample {i} ID changed from {orig_sample['id']} to {current_sample['id']}")
|
619 |
-
is_sequence_maintained = False
|
620 |
-
|
621 |
-
# Compare input fingerprints
|
622 |
-
if 'conversations' in orig_sample and 'conversations' in current_sample:
|
623 |
-
orig_len = len(orig_sample['conversations'])
|
624 |
-
curr_len = len(current_sample['conversations'])
|
625 |
-
if orig_len != curr_len:
|
626 |
-
log_info(f"WARNING: Sequence integrity compromised! Sample {i} conversation length changed from {orig_len} to {curr_len}")
|
627 |
-
is_sequence_maintained = False
|
628 |
-
|
629 |
-
if is_sequence_maintained:
|
630 |
-
log_info("Data sequence integrity check: OK")
|
631 |
else:
|
632 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
633 |
except Exception as e:
|
634 |
log_info(f"Warning: Couldn't verify sequence integrity: {e}")
|
635 |
|
@@ -666,16 +819,33 @@ class LoggingCallback(TrainerCallback):
|
|
666 |
log_info("Sequence integrity verification enabled during training")
|
667 |
|
668 |
# Save actual samples for later verification
|
669 |
-
if trainer and trainer.train_dataset:
|
670 |
-
# Get some reference samples from the beginning of the dataset
|
671 |
-
self.sample_indices =
|
672 |
-
self.sequence_samples = [
|
673 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
674 |
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
679 |
else:
|
680 |
log_info("Warning: Could not capture reference samples - verification will be limited")
|
681 |
except Exception as e:
|
@@ -685,7 +855,8 @@ class LoggingCallback(TrainerCallback):
|
|
685 |
log_info("=== Training is starting ===")
|
686 |
|
687 |
# Log important training parameters for visibility
|
688 |
-
|
|
|
689 |
log_info(f"Learning rate: {args.learning_rate}")
|
690 |
log_info(f"Epochs: {args.num_train_epochs}")
|
691 |
|
|
|
285 |
raise
|
286 |
|
287 |
def load_dataset_with_mapping(dataset_config):
|
288 |
+
"""Load dataset and apply appropriate column mappings."""
|
289 |
try:
|
290 |
# Load dataset
|
291 |
dataset_name = dataset_config.get("dataset", {}).get("name", "")
|
|
|
319 |
if source != target: # Only rename if names are different
|
320 |
dataset = dataset.rename_column(source, target)
|
321 |
|
322 |
+
# Add prompt_number field that increments based on original order
|
323 |
+
def add_prompt_numbers(examples, indices):
|
324 |
+
# Defensive check to ensure indices is not None
|
325 |
+
if indices is None:
|
326 |
+
logger.warning("Warning: indices is None in add_prompt_numbers, using empty list")
|
327 |
+
indices = []
|
328 |
+
|
329 |
+
# Create a new field with the dataset index as the prompt number, starting at 1
|
330 |
+
examples["prompt_number"] = [idx + 1 for idx in indices] # Adding 1 to make it 1-indexed
|
331 |
+
return examples
|
332 |
+
|
333 |
+
# Add prompt numbers to the dataset based on original order
|
334 |
+
logger.info("Adding prompt numbers based on original dataset order (starting at 1)")
|
335 |
+
try:
|
336 |
+
dataset = dataset.map(
|
337 |
+
add_prompt_numbers,
|
338 |
+
with_indices=True,
|
339 |
+
desc="Adding prompt numbers"
|
340 |
+
)
|
341 |
+
logger.info(f"Successfully added prompt_number field to dataset")
|
342 |
+
except Exception as e:
|
343 |
+
logger.error(f"Error adding prompt numbers: {e}")
|
344 |
+
# Create a fallback implementation that doesn't rely on with_indices
|
345 |
+
logger.info("Attempting fallback method for adding prompt numbers")
|
346 |
+
|
347 |
+
def add_prompt_numbers_fallback(example, idx):
|
348 |
+
example["prompt_number"] = idx + 1
|
349 |
+
return example
|
350 |
+
|
351 |
+
# Process each example one by one with explicit indices
|
352 |
+
updated_examples = []
|
353 |
+
for i, example in enumerate(dataset):
|
354 |
+
updated_examples.append(add_prompt_numbers_fallback(dict(example), i))
|
355 |
+
|
356 |
+
# Create a new dataset with the updated examples
|
357 |
+
from datasets import Dataset
|
358 |
+
dataset = Dataset.from_list(updated_examples)
|
359 |
+
logger.info(f"Successfully added prompt_number field using fallback method")
|
360 |
+
|
361 |
# Verify expected columns exist
|
362 |
expected_columns = {"id", "conversations"}
|
363 |
for col in expected_columns:
|
|
|
408 |
|
409 |
# Verify the IDs are in sequential order if they're numeric
|
410 |
try:
|
411 |
+
if len(dataset) > 1:
|
412 |
+
# Check prompt numbers are sequential
|
413 |
+
sample_indices = range(min(10, len(dataset)))
|
414 |
+
sample_prompt_numbers = []
|
415 |
+
|
416 |
+
# Defensive collection of prompt numbers
|
417 |
+
for i in sample_indices:
|
418 |
+
try:
|
419 |
+
if i < len(dataset) and "prompt_number" in dataset[i]:
|
420 |
+
sample_prompt_numbers.append(dataset[i]["prompt_number"])
|
421 |
+
else:
|
422 |
+
# If prompt_number doesn't exist, use index+1 as fallback
|
423 |
+
sample_prompt_numbers.append(i + 1)
|
424 |
+
logger.warning(f"Sample at index {i} missing prompt_number, using {i+1} as fallback")
|
425 |
+
except Exception as e:
|
426 |
+
logger.warning(f"Error accessing sample at index {i}: {e}")
|
427 |
+
sample_prompt_numbers.append(i + 1) # Use fallback
|
428 |
+
|
429 |
+
logger.info(f"Verifying sequential integrity with prompt numbers: {sample_prompt_numbers}")
|
430 |
|
431 |
+
# Check if prompt numbers are sequential (1-indexed)
|
432 |
+
if sample_prompt_numbers:
|
433 |
+
is_sequential = all(sample_prompt_numbers[i] == i + 1 for i in range(len(sample_prompt_numbers)))
|
434 |
+
if not is_sequential:
|
435 |
+
logger.warning("WARNING: Prompt numbers are not in sequential order!")
|
|
|
436 |
logger.warning("This may indicate that data sequence is not preserved.")
|
437 |
else:
|
438 |
+
logger.info("Prompt numbers verify that samples are in sequential order.")
|
439 |
+
else:
|
440 |
+
logger.warning("Could not verify sequential integrity: no prompt numbers collected")
|
441 |
+
|
442 |
+
# Also check original IDs as a backup if numeric
|
443 |
+
try:
|
444 |
+
sample_examples = []
|
445 |
+
for i in sample_indices:
|
446 |
+
try:
|
447 |
+
if i < len(dataset):
|
448 |
+
sample_examples.append(dataset[i])
|
449 |
+
except Exception as e:
|
450 |
+
logger.warning(f"Error accessing dataset at index {i}: {e}")
|
451 |
+
|
452 |
+
if sample_examples:
|
453 |
+
if all(isinstance(example.get('id', ''), (int, str)) for example in sample_examples):
|
454 |
+
sample_ids = [example.get('id', '') for example in sample_examples if 'id' in example]
|
455 |
+
|
456 |
+
if sample_ids and all(isinstance(id, int) or (isinstance(id, str) and id.isdigit()) for id in sample_ids):
|
457 |
+
numeric_ids = [int(id) if isinstance(id, str) else id for id in sample_ids]
|
458 |
+
if len(numeric_ids) > 1:
|
459 |
+
is_ordered = all(numeric_ids[i] <= numeric_ids[i+1] for i in range(len(numeric_ids)-1))
|
460 |
+
if not is_ordered:
|
461 |
+
logger.warning("WARNING: Sample IDs are not in sequential order.")
|
462 |
+
else:
|
463 |
+
logger.info("Sample IDs appear to be in sequential order.")
|
464 |
+
except Exception as e:
|
465 |
+
logger.warning(f"Error checking ID sequence: {e}")
|
466 |
except Exception as e:
|
467 |
logger.warning(f"Could not verify sequential integrity: {e}")
|
468 |
|
469 |
+
# Log examples without printing full content - with defensive coding
|
470 |
if "conversations" in dataset.column_names:
|
471 |
+
try:
|
472 |
+
# Safely get first few samples
|
473 |
+
first_few_indices = range(min(5, len(dataset)))
|
474 |
+
sample_prompt_numbers = []
|
475 |
+
sample_ids = []
|
476 |
+
|
477 |
+
for i in first_few_indices:
|
478 |
+
try:
|
479 |
+
example = dataset[i]
|
480 |
+
if 'prompt_number' in example:
|
481 |
+
sample_prompt_numbers.append(example['prompt_number'])
|
482 |
+
if 'id' in example:
|
483 |
+
sample_ids.append(example['id'])
|
484 |
+
except Exception as e:
|
485 |
+
logger.warning(f"Error accessing sample at index {i}: {e}")
|
486 |
+
|
487 |
+
logger.info(f"First few samples - Prompt numbers: {sample_prompt_numbers}, IDs: {sample_ids}")
|
488 |
|
489 |
+
# Log conversation structure without full content
|
490 |
+
if len(dataset) > 0:
|
491 |
+
try:
|
492 |
+
sample_conv_structure = []
|
493 |
+
first_example = dataset[0]
|
494 |
+
|
495 |
+
if 'conversations' in first_example and first_example['conversations'] is not None:
|
496 |
+
for msg in first_example['conversations']:
|
497 |
+
if isinstance(msg, dict):
|
498 |
+
content = msg.get('content', '')
|
499 |
+
preview = content[:50] + "..." if len(content) > 50 else content
|
500 |
+
sample_conv_structure.append({
|
501 |
+
"role": msg.get('role', ''),
|
502 |
+
"content_length": len(content),
|
503 |
+
"preview": preview
|
504 |
+
})
|
505 |
+
logger.info(f"Conversation structure: {sample_conv_structure}")
|
506 |
+
except Exception as e:
|
507 |
+
logger.warning(f"Error logging conversation structure: {e}")
|
508 |
+
except Exception as e:
|
509 |
+
logger.warning(f"Error logging sample examples: {e}")
|
510 |
|
511 |
logger.info(f"Dataset loaded successfully with {len(dataset)} examples")
|
512 |
logger.info(f"Dataset columns: {dataset.column_names}")
|
|
|
701 |
if self.verify_sequence is True and state.global_step % 100 == 0 and self.sequence_samples:
|
702 |
try:
|
703 |
# Get a batch of data without disturbing the training
|
704 |
+
train_dataloader = trainer.get_train_dataloader()
|
705 |
+
if train_dataloader is None:
|
706 |
+
log_info("Warning: Could not get train dataloader for verification")
|
707 |
+
else:
|
708 |
+
batch_iterator = iter(train_dataloader)
|
709 |
+
if batch_iterator is None:
|
710 |
+
log_info("Warning: Could not get batch iterator for verification")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
711 |
else:
|
712 |
+
try:
|
713 |
+
batch = next(batch_iterator)
|
714 |
+
if batch is None:
|
715 |
+
log_info("Warning: Could not get batch for verification")
|
716 |
+
elif 'input_ids' in batch and 'labels' in batch:
|
717 |
+
log_info("Verifying data sequence integrity...")
|
718 |
+
|
719 |
+
# Check if we can access some of our reference samples
|
720 |
+
if not hasattr(trainer, 'train_dataset') or trainer.train_dataset is None:
|
721 |
+
log_info("Warning: Train dataset is not available")
|
722 |
+
else:
|
723 |
+
# Get current samples defensively
|
724 |
+
current_samples = []
|
725 |
+
current_indices = list(range(min(3, len(trainer.train_dataset))))
|
726 |
+
|
727 |
+
for idx in current_indices:
|
728 |
+
try:
|
729 |
+
if idx < len(trainer.train_dataset):
|
730 |
+
current_samples.append(trainer.train_dataset[idx])
|
731 |
+
except Exception as e:
|
732 |
+
log_info(f"Warning: Error accessing dataset at index {idx}: {e}")
|
733 |
+
|
734 |
+
# Only proceed if we have samples to compare
|
735 |
+
if current_samples and self.sequence_samples:
|
736 |
+
# Compare current samples with our reference samples from training start
|
737 |
+
is_sequence_maintained = True
|
738 |
+
|
739 |
+
for i, (orig_idx, orig_sample) in enumerate(zip(self.sample_indices, self.sequence_samples)):
|
740 |
+
# Check if sample index is valid
|
741 |
+
if i < len(current_samples):
|
742 |
+
current_sample = current_samples[i]
|
743 |
+
|
744 |
+
# Compare prompt numbers if available
|
745 |
+
if ('prompt_number' in orig_sample and
|
746 |
+
'prompt_number' in current_sample and
|
747 |
+
orig_sample['prompt_number'] is not None and
|
748 |
+
current_sample['prompt_number'] is not None):
|
749 |
+
|
750 |
+
if orig_sample['prompt_number'] != current_sample['prompt_number']:
|
751 |
+
log_info(f"WARNING: Sequence integrity compromised! Sample {i} prompt number changed from {orig_sample['prompt_number']} to {current_sample['prompt_number']}")
|
752 |
+
is_sequence_maintained = False
|
753 |
+
|
754 |
+
# Also compare IDs as a backup check
|
755 |
+
elif ('id' in orig_sample and
|
756 |
+
'id' in current_sample and
|
757 |
+
orig_sample['id'] is not None and
|
758 |
+
current_sample['id'] is not None):
|
759 |
+
|
760 |
+
if orig_sample['id'] != current_sample['id']:
|
761 |
+
log_info(f"WARNING: Sequence integrity compromised! Sample {i} ID changed from {orig_sample['id']} to {current_sample['id']}")
|
762 |
+
is_sequence_maintained = False
|
763 |
+
|
764 |
+
# Compare input fingerprints
|
765 |
+
if ('conversations' in orig_sample and
|
766 |
+
'conversations' in current_sample and
|
767 |
+
orig_sample['conversations'] is not None and
|
768 |
+
current_sample['conversations'] is not None):
|
769 |
+
|
770 |
+
orig_len = len(orig_sample['conversations'])
|
771 |
+
curr_len = len(current_sample['conversations'])
|
772 |
+
if orig_len != curr_len:
|
773 |
+
log_info(f"WARNING: Sequence integrity compromised! Sample {i} conversation length changed from {orig_len} to {curr_len}")
|
774 |
+
is_sequence_maintained = False
|
775 |
+
|
776 |
+
if is_sequence_maintained:
|
777 |
+
log_info("Data sequence integrity check: OK")
|
778 |
+
else:
|
779 |
+
log_info("CRITICAL WARNING: Data sequence integrity check FAILED!")
|
780 |
+
else:
|
781 |
+
log_info("Warning: Not enough samples available for sequence verification")
|
782 |
+
except StopIteration:
|
783 |
+
log_info("Warning: No batches available in the dataloader")
|
784 |
+
except Exception as e:
|
785 |
+
log_info(f"Warning: Error iterating through dataloader: {e}")
|
786 |
except Exception as e:
|
787 |
log_info(f"Warning: Couldn't verify sequence integrity: {e}")
|
788 |
|
|
|
819 |
log_info("Sequence integrity verification enabled during training")
|
820 |
|
821 |
# Save actual samples for later verification
|
822 |
+
if trainer and hasattr(trainer, 'train_dataset') and trainer.train_dataset is not None:
|
823 |
+
# Get some reference samples from the beginning of the dataset defensively
|
824 |
+
self.sample_indices = []
|
825 |
+
self.sequence_samples = []
|
826 |
+
|
827 |
+
max_samples = min(5, len(trainer.train_dataset))
|
828 |
+
for i in range(max_samples):
|
829 |
+
try:
|
830 |
+
if i < len(trainer.train_dataset):
|
831 |
+
self.sample_indices.append(i)
|
832 |
+
self.sequence_samples.append(trainer.train_dataset[i])
|
833 |
+
except Exception as e:
|
834 |
+
log_info(f"Warning: Error capturing reference sample at index {i}: {e}")
|
835 |
|
836 |
+
if self.sequence_samples:
|
837 |
+
log_info(f"Captured {len(self.sequence_samples)} reference samples for sequence integrity verification")
|
838 |
+
|
839 |
+
# Log sample prompt numbers for debugging
|
840 |
+
sample_prompt_numbers = []
|
841 |
+
for s in self.sequence_samples:
|
842 |
+
if isinstance(s, dict) and 'prompt_number' in s and s['prompt_number'] is not None:
|
843 |
+
sample_prompt_numbers.append(s.get('prompt_number'))
|
844 |
+
|
845 |
+
if sample_prompt_numbers:
|
846 |
+
log_info(f"Reference sample prompt numbers: {sample_prompt_numbers}")
|
847 |
+
else:
|
848 |
+
log_info("Warning: No reference samples were captured")
|
849 |
else:
|
850 |
log_info("Warning: Could not capture reference samples - verification will be limited")
|
851 |
except Exception as e:
|
|
|
855 |
log_info("=== Training is starting ===")
|
856 |
|
857 |
# Log important training parameters for visibility
|
858 |
+
total_batch_size = args.per_device_train_batch_size * args.gradient_accumulation_steps * NUM_GPUS
|
859 |
+
log_info(f"Batch size: {args.per_device_train_batch_size} × {args.gradient_accumulation_steps} steps × {NUM_GPUS} GPUs = {total_batch_size} total")
|
860 |
log_info(f"Learning rate: {args.learning_rate}")
|
861 |
log_info(f"Epochs: {args.num_train_epochs}")
|
862 |
|