#!/usr/bin/env python ### ----------------------------------------------------------------------- ### (test_BASE, Revised) version_1.07 ALPHA, app.py ### ----------------------------------------------------------------------- # ------------------------------------------------------------------------- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------- import os import re import uuid import time import psutil import subprocess from tqdm import tqdm import tempfile from fpdf import FPDF from pathlib import Path import numpy as np import torch from transformers import pipeline from gpuinfo import GPUInfo import gradio as gr ############################################################################### # Configuration. ############################################################################### #if not torch.cuda.is_available(): #DESCRIPTION += "\n

⚠️Running on CPU, This may not work on CPU.

" CACHE_EXAMPLES = torch.device('cuda') and os.getenv("CACHE_EXAMPLES", "0") == "1" #CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" #USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" #ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" device = torch.device('cuda') #device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") #@spaces.GPU def transcribe(file_upload, progress=gr.Progress(track_tqdm=True)): # microphone file = file_upload # microphone if microphone is not None else start_time = time.time() #--------------____________________________________________--------------" #if torch.cuda.is_available(): #with torch.no_grad(): #pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", device=device) with torch.no_grad(): pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", device=device) """ # -- chunking chunks = chunk_audio(file, chunk_length_ms=30000, overlap_length_ms=5000) full_transcription = [] for chunk in chunks: # -- convert chunk to temporary file-like object temp_audio = chunk.export(format="wav") # -- transcribe chunk text = pipe(temp_audio)["text"] full_transcription.append(text) # -- join chunk transcriptions full_text = " ".join(full_transcription) """ text = pipe(file)["text"] #--------------____________________________________________--------------" end_time = time.time() output_time = end_time - start_time # --Word count word_count = len(text.split()) # --Memory metrics memory = psutil.virtual_memory() # --CPU metric cpu_usage = psutil.cpu_percent(interval=1) # --GPU metric gpu_utilization, gpu_memory = GPUInfo.gpu_usage() # --system info string system_info = f""" Processing time: {output_time:.2f} seconds. Number of words: {word_count} GPU Memory: {gpu_memory} """ #--------------____________________________________________--------------" #CPU Usage: {cpu_usage}% #Memory used: {memory.percent}% #GPU Utilization: {gpu_utilization}% return text, system_info ############################################################################### # Interface. ############################################################################### HEADER_INFO = """ # SWITCHVOX ✨|🇳🇴 *Transkribering av lydfiler til norsk bokmål.* """.strip() LOGO = "https://cdn-lfs-us-1.huggingface.co/repos/fe/3b/fe3bd7c8beece8b087fddcc2278295e7f56c794c8dcf728189f4af8bddc585e1/5112f67899d65e9797a7a60d05f983cf2ceefbe2f7cba74eeca93a4e7061becc?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27logo.png%3B+filename%3D%22logo.png%22%3B&response-content-type=image%2Fpng&Expires=1725531489&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcyNTUzMTQ4OX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmh1Z2dpbmdmYWNlLmNvL3JlcG9zL2ZlLzNiL2ZlM2JkN2M4YmVlY2U4YjA4N2ZkZGNjMjI3ODI5NWU3ZjU2Yzc5NGM4ZGNmNzI4MTg5ZjRhZjhiZGRjNTg1ZTEvNTExMmY2Nzg5OWQ2NWU5Nzk3YTdhNjBkMDVmOTgzY2YyY2VlZmJlMmY3Y2JhNzRlZWNhOTNhNGU3MDYxYmVjYz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=vNqupMg9p-Wx9BvqVlK5BhhyOeS58YjZW2-bEP4OVd0azdA0AfW0QG8EGxZ1h7UwuJnMwlPGayA0P46Ob9DSRH48BGjH176UgbPBcasSAI43jb9PJO9qIznrv9orzPt3ZrqTll0d9cKayQ96iPWQond-G5xbl0bNYb9qLXh9w3Ww%7EELKIFU9KeDOvIKww9cHftCeVFqCFJC%7Etimk-eOHo9g4xVfAaVMFoVNeJOVVpTW-MzPb1EGccyN9-3WJaF9Nwg3fkb7FRazg8IYcAatS2PahLpfp-zJup7y-ywnPzb8jJPgN3TBu6-M7hE4OHVcRmxeXk3VDRgSFVfbmnrlc%7Ew__&Key-Pair-Id=K24J24Z295AEI9" SIDEBAR_INFO = f"""
""" def save_to_pdf(text, summary): pdf = FPDF() pdf.add_page() pdf.set_font("Arial", size=12) if text: pdf.multi_cell(0, 10, "Transkribert Tekst:\n" + text) pdf.ln(10) # Paragraph metric if summary: pdf.multi_cell(0, 10, "Summary:\n" + summary) pdf_output_path = "transcription_.pdf" pdf.output(pdf_output_path) return pdf_output_path css = """ #transcription_output textarea { background-color: #000000; /* black */ color: #00FF00 !important; /* text color */ font-size: 18px; /* font size */ } #system_info_box textarea { background-color: #ffe0b3; /* orange */ color: black !important; /* text color */ font-size: 16px; /* font size */ font-weight: bold; /* bold font */ } """ iface = gr.Blocks(css=css) with iface: gr.HTML(SIDEBAR_INFO) gr.Markdown(HEADER_INFO) with gr.Row(): gr.Markdown(''' ##### 🔊 Last opp lydfila ##### ☕️ Trykk på "Transkriber" knappen og vent på svar ##### ⚡️ Går rimelig bra kjapt med Norwegian NB-Whisper Large.. ##### 😅 Planlegger tilleggs-funksjoner senere ##### 🎤 Bruk av mikrofon mulig (*ikke testet*) ''') #microphone = gr.Audio(label="Microphone", sources="microphone", type="filepath") upload = gr.Audio(label="Upload audio", sources="upload", type="filepath") transcribe_btn = gr.Button("Transkriber") with gr.Row(): with gr.Column(scale=3): text_output = gr.Textbox(label="Transkribert Tekst", elem_id="transcription_output") with gr.Column(scale=1): system_info = gr.Textbox(label="Antall sekunder, ord:", elem_id="system_info_box") with gr.Tabs(): with gr.TabItem("Download PDF"): pdf_text_only = gr.Button("Last ned pdf med resultat") pdf_output = gr.File(label="/.pdf") pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[text_output], outputs=[pdf_output]) with gr.Row(): gr.Markdown('''
Open Source? Yes! License: Apache 2.0
''') transcribe_btn.click( fn=transcribe, inputs=[upload] # microphone outputs=[text_output, system_info] ) #transcribe_btn.click(fn=transcribe, inputs=[microphone, upload], outputs=[text_output, system_info]) iface.launch(share=True,debug=True)