chanhua commited on
Commit
4007c63
·
verified ·
1 Parent(s): 0b155d7

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +2 -2
  2. image_feature.py +4 -4
app.py CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
2
  import image_feature as func
3
 
4
 
5
- def work(image1, image2):
6
  return func.infer1(image1, image2)
7
 
8
 
@@ -15,7 +15,7 @@ def work(image1, image2):
15
  # demo.launch()
16
 
17
  # 定义你的界面
18
- with gr.Interface(fn=work,
19
  inputs=[gr.Textbox(label='图片1', lines=1), gr.Textbox(label='图片2', lines=1)], # 两个文本输入框
20
  outputs=[gr.Textbox(lines=3, label="推理结果")], # 输出为文本
21
  title="图片相似度推理", # 界面标题
 
2
  import image_feature as func
3
 
4
 
5
+ def work11(image1, image2):
6
  return func.infer1(image1, image2)
7
 
8
 
 
15
  # demo.launch()
16
 
17
  # 定义你的界面
18
+ with gr.Interface(fn=work11,
19
  inputs=[gr.Textbox(label='图片1', lines=1), gr.Textbox(label='图片2', lines=1)], # 两个文本输入框
20
  outputs=[gr.Textbox(lines=3, label="推理结果")], # 输出为文本
21
  title="图片相似度推理", # 界面标题
image_feature.py CHANGED
@@ -54,9 +54,9 @@ model = AutoModel.from_pretrained("google/vit-base-patch16-224").to(DEVICE)
54
 
55
 
56
  # 推理
57
- def infer(img):
58
  # image_real = Image.open(requests.get(img_urls[0], stream=True).raw).convert("RGB")
59
- image = Image.open(requests.get(img, stream=True).raw).convert("RGB")
60
  inputs = processor(image, return_tensors="pt").to(DEVICE)
61
  outputs = model(**inputs)
62
  return outputs.pooler_output
@@ -64,8 +64,8 @@ def infer(img):
64
 
65
  # 推理
66
  def infer1(image1, image2):
67
- embed_real = infer(image1)
68
- embed_gen = infer(image2)
69
  similarity_score = cosine_similarity(embed_real, embed_gen, dim=1)
70
  print(similarity_score)
71
  # 如果你想在CPU上操作这个值,你需要先将tensor移动到CPU
 
54
 
55
 
56
  # 推理
57
+ def infer2(url):
58
  # image_real = Image.open(requests.get(img_urls[0], stream=True).raw).convert("RGB")
59
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
60
  inputs = processor(image, return_tensors="pt").to(DEVICE)
61
  outputs = model(**inputs)
62
  return outputs.pooler_output
 
64
 
65
  # 推理
66
  def infer1(image1, image2):
67
+ embed_real = infer2(image1)
68
+ embed_gen = infer2(image2)
69
  similarity_score = cosine_similarity(embed_real, embed_gen, dim=1)
70
  print(similarity_score)
71
  # 如果你想在CPU上操作这个值,你需要先将tensor移动到CPU