--- title: OpenAI to Gemini Adapter emoji: 🔄☁️ colorFrom: blue colorTo: green sdk: docker app_port: 7860 --- # OpenAI to Gemini Adapter This service provides an OpenAI-compatible API that translates requests to Google's Vertex AI Gemini models, allowing you to use Gemini models with tools expecting an OpenAI interface. ## Features - OpenAI-compatible API endpoints (`/v1/chat/completions`, `/v1/models`). - Supports Google Cloud credentials via `GOOGLE_CREDENTIALS_JSON` secret (recommended for Spaces) or local file methods. - Supports credential rotation when using local files. - Handles streaming and non-streaming responses. - Configured for easy deployment on Hugging Face Spaces using Docker (port 7860) or locally via Docker Compose (port 8050). ## Hugging Face Spaces Deployment (Recommended) This application is ready for deployment on Hugging Face Spaces using Docker. 1. **Create a new Space:** Go to Hugging Face Spaces and create a new Space, choosing "Docker" as the Space SDK. 2. **Upload Files:** Upload the `app/` directory, `Dockerfile`, and `app/requirements.txt` to your Space repository. You can do this via the web interface or using Git. 3. **Configure Secrets:** In your Space settings, navigate to the **Secrets** section and add the following secrets: * `API_KEY`: Your desired API key for authenticating requests to this adapter service. If not set, it defaults to `123456`. * `GOOGLE_CREDENTIALS_JSON`: The **entire content** of your Google Cloud service account JSON key file. Copy and paste the JSON content directly into the secret value field. **This is the required method for providing credentials on Hugging Face.** 4. **Deployment:** Hugging Face will automatically build and deploy the Docker container. The application will run on port 7860 as defined in the `Dockerfile` and this README's metadata. Your adapter service will be available at the URL provided by your Hugging Face Space (e.g., `https://your-user-name-your-space-name.hf.space`). ## Local Docker Setup (for Development/Testing) ### Prerequisites - Docker and Docker Compose - Google Cloud service account credentials with Vertex AI access ### Credential Setup (Local Docker) 1. Create a `credentials` directory in the project root: ```bash mkdir -p credentials ``` 2. Add your service account JSON files to the `credentials` directory: ```bash # Example with multiple credential files cp /path/to/your/service-account1.json credentials/service-account1.json cp /path/to/your/service-account2.json credentials/service-account2.json ``` The service will automatically detect and rotate through all `.json` files in this directory if the `GOOGLE_CREDENTIALS_JSON` environment variable is *not* set. 3. Alternatively, set the `GOOGLE_APPLICATION_CREDENTIALS` environment variable *in your local environment or `docker-compose.yml`* to the *path* of a single credential file (used as a fallback if the other methods fail). ### Running Locally Start the service using Docker Compose: ```bash docker-compose up -d ``` The service will be available at `http://localhost:8050` (as defined in `docker-compose.yml`). ## API Usage The service implements OpenAI-compatible endpoints: - `GET /v1/models` - List available models - `POST /v1/chat/completions` - Create a chat completion - `GET /health` - Health check endpoint (includes credential status) All endpoints require authentication using an API key in the Authorization header. ### Authentication The service requires an API key for authentication. To authenticate, include the API key in the `Authorization` header using the `Bearer` token format: ``` Authorization: Bearer YOUR_API_KEY ``` Replace `YOUR_API_KEY` with the key you configured (either via the `API_KEY` secret/environment variable or the default `123456`). ### Example Requests *(Replace `YOUR_ADAPTER_URL` with your Hugging Face Space URL or `http://localhost:8050` if running locally)* #### Basic Request ```bash curl -X POST YOUR_ADAPTER_URL/v1/chat/completions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer YOUR_API_KEY" \ -d '{ "model": "gemini-1.5-pro", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello, how are you?"} ], "temperature": 0.7 }' ``` #### Grounded Search Request ```bash curl -X POST YOUR_ADAPTER_URL/v1/chat/completions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer YOUR_API_KEY" \ -d '{ "model": "gemini-2.5-pro-exp-03-25-search", "messages": [ {"role": "system", "content": "You are a helpful assistant with access to the latest information."}, {"role": "user", "content": "What are the latest developments in quantum computing?"} ], "temperature": 0.2 }' ``` ### Supported Models The API supports the following Vertex AI Gemini models: | Model ID | Description | | ------------------------------ | ---------------------------------------------- | | `gemini-2.5-pro-exp-03-25` | Gemini 2.5 Pro Experimental (March 25) | | `gemini-2.5-pro-exp-03-25-search` | Gemini 2.5 Pro with Google Search grounding | | `gemini-2.0-flash` | Gemini 2.0 Flash | | `gemini-2.0-flash-search` | Gemini 2.0 Flash with Google Search grounding | | `gemini-2.0-flash-lite` | Gemini 2.0 Flash Lite | | `gemini-2.0-flash-lite-search` | Gemini 2.0 Flash Lite with Google Search grounding | | `gemini-2.0-pro-exp-02-05` | Gemini 2.0 Pro Experimental (February 5) | | `gemini-1.5-flash` | Gemini 1.5 Flash | | `gemini-1.5-flash-8b` | Gemini 1.5 Flash 8B | | `gemini-1.5-pro` | Gemini 1.5 Pro | | `gemini-1.0-pro-002` | Gemini 1.0 Pro | | `gemini-1.0-pro-vision-001` | Gemini 1.0 Pro Vision | | `gemini-embedding-exp` | Gemini Embedding Experimental | Models with the `-search` suffix enable grounding with Google Search using dynamic retrieval. ### Supported Parameters The API supports common OpenAI-compatible parameters, mapping them to Vertex AI where possible: | OpenAI Parameter | Vertex AI Parameter | Description | | ------------------- | --------------------- | ------------------------------------------------- | | `temperature` | `temperature` | Controls randomness (0.0 to 1.0) | | `max_tokens` | `max_output_tokens` | Maximum number of tokens to generate | | `top_p` | `top_p` | Nucleus sampling parameter (0.0 to 1.0) | | `top_k` | `top_k` | Top-k sampling parameter | | `stop` | `stop_sequences` | List of strings that stop generation when encountered | | `presence_penalty` | `presence_penalty` | Penalizes repeated tokens | | `frequency_penalty` | `frequency_penalty` | Penalizes frequent tokens | | `seed` | `seed` | Random seed for deterministic generation | | `logprobs` | `logprobs` | Number of log probabilities to return | | `n` | `candidate_count` | Number of completions to generate | ## Credential Handling Priority The application loads Google Cloud credentials in the following order: 1. **`GOOGLE_CREDENTIALS_JSON` Environment Variable / Secret:** Checks for the JSON *content* directly in this variable (Required for Hugging Face). 2. **`credentials/` Directory (Local Only):** Looks for `.json` files in the directory specified by `CREDENTIALS_DIR` (Default: `/app/credentials` inside the container). Rotates through found files. Used if `GOOGLE_CREDENTIALS_JSON` is not set. 3. **`GOOGLE_APPLICATION_CREDENTIALS` Environment Variable (Local Only):** Checks for a *file path* specified by this variable. Used as a fallback if the above methods fail. ## Environment Variables / Secrets - `API_KEY`: API key for authentication (Default: `123456`). **Required as Secret on Hugging Face.** - `GOOGLE_CREDENTIALS_JSON`: **(Required Secret on Hugging Face)** The full JSON content of your service account key. Takes priority over other methods. - `CREDENTIALS_DIR` (Local Only): Directory containing credential files (Default: `/app/credentials` in the container). Used if `GOOGLE_CREDENTIALS_JSON` is not set. - `GOOGLE_APPLICATION_CREDENTIALS` (Local Only): Path to a *specific* credential file. Used as a fallback if the above methods fail. - `PORT`: Not needed for `CMD` config (uses 7860). Hugging Face provides this automatically, `docker-compose.yml` maps 8050 locally. ## Health Check You can check the status of the service using the health endpoint: ```bash curl YOUR_ADAPTER_URL/health -H "Authorization: Bearer YOUR_API_KEY" ``` This returns information about the credential status: ```json { "status": "ok", "credentials": { "available": 1, // Example: 1 if loaded via JSON secret, or count if loaded from files "files": [], // Lists files only if using CREDENTIALS_DIR method "current_index": 0 } } ``` ## License This project is licensed under the MIT License.