Spaces:
Running
Running
File size: 18,230 Bytes
aea85e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
# setwd('~/Dropbox/ImageSeq/')
options(error = NULL)
library(shiny)
library(dplyr)
library(fields) # For image.plot in heatMap
library(akima) # For interpolation
# Load the data from sm.csv
sm <- read.csv("sm.csv")
# Define function to convert to numeric
f2n <- function(x) as.numeric(as.character(x))
# Compute MaxImageDimsLeft and MaxImageDimsRight from MaxImageDims
sm$MaxImageDimsLeft <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[1]))
sm$MaxImageDimsRight <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[2]))
# Heatmap function with optimal_point parameter
heatMap <- function(x, y, z,
main = "",
N, yaxt = NULL,
xlab = "",
ylab = "",
horizontal = FALSE,
useLog = "",
legend.width = 1,
ylim = NULL,
xlim = NULL,
zlim = NULL,
add.legend = TRUE,
legend.only = FALSE,
vline = NULL,
col_vline = "black",
hline = NULL,
col_hline = "black",
cex.lab = 2,
cex.main = 2,
myCol = NULL,
includeMarginals = FALSE,
marginalJitterSD_x = 0.01,
marginalJitterSD_y = 0.01,
openBrowser = FALSE,
optimal_point = NULL) {
if (openBrowser) { browser() }
s_ <- akima::interp(x = x, y = y, z = z,
xo = seq(min(x), max(x), length = N),
yo = seq(min(y), max(y), length = N),
duplicate = "mean")
if (is.null(xlim)) { xlim = range(s_$x, finite = TRUE) }
if (is.null(ylim)) { ylim = range(s_$y, finite = TRUE) }
imageFxn <- if (add.legend) fields::image.plot else graphics::image
if (!grepl(useLog, pattern = "z")) {
imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = main,
cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim,
legend.width = legend.width, horizontal = horizontal, yaxt = yaxt,
zlim = zlim, legend.only = legend.only)
} else {
useLog <- gsub(useLog, pattern = "z", replace = "")
zTicks <- summary(c(s_$z))
ep_ <- 0.001
zTicks[zTicks < ep_] <- ep_
zTicks <- exp(seq(log(min(zTicks)), log(max(zTicks)), length.out = 10))
zTicks <- round(zTicks, abs(min(log(zTicks, base = 10))))
s_$z[s_$z < ep_] <- ep_
imageFxn(s_$x, s_$y, log(s_$z), yaxt = yaxt,
axis.args = list(at = log(zTicks), labels = zTicks),
main = main, cex.main = cex.main, xlab = xlab, ylab = ylab,
log = useLog, cex.lab = cex.lab, xlim = xlim, ylim = ylim,
horizontal = horizontal, col = myCol, legend.width = legend.width,
zlim = zlim, legend.only = legend.only)
}
if (!is.null(vline)) { abline(v = vline, lwd = 10, col = col_vline) }
if (!is.null(hline)) { abline(h = hline, lwd = 10, col = col_hline) }
if (includeMarginals) {
points(x + rnorm(length(y), sd = marginalJitterSD_x * sd(x)),
rep(ylim[1] * 1.1, length(y)), pch = "|", col = "darkgray")
points(rep(xlim[1] * 1.1, length(x)),
y + rnorm(length(y), sd = sd(y) * marginalJitterSD_y), pch = "-", col = "darkgray")
}
# Add green star at optimal point if provided
if (!is.null(optimal_point)) {
points(optimal_point$x, optimal_point$y, pch = 8, col = "green", cex = 3, lwd = 4)
}
}
##############################################################################
# IMPORTANT: Store the meaningful labels for metric in a named vector.
# The "name" is what is displayed to the user in the dropdown,
# while the "value" is the underlying column in the dataset.
##############################################################################
metric_choices <- c(
"Mean AUTOC RATE Ratio" = "AUTOC_rate_std_ratio_mean",
"Mean AUTOC RATE" = "AUTOC_rate_mean",
"Mean SD of AUTOC RATE" = "AUTOC_rate_std_mean",
"Mean AUTOC RATE Ratio with PC" = "AUTOC_rate_std_ratio_mean_pc",
"Mean AUTOC RATE with PC" = "AUTOC_rate_mean_pc",
"Mean SD of AUTOC RATE with PC" = "AUTOC_rate_std_mean_pc",
"Mean Variable Importance (Image 1)" = "MeanVImportHalf1",
"Mean Variable Importance (Image 2)" = "MeanVImportHalf2",
"Mean Fraction of Top k Features (Image 1)" = "FracTopkHalf1",
"Mean RMSE" = "RMSE"
)
##############################################################################
# Helper function to retrieve the *label* from its code
##############################################################################
getMetricLabel <- function(metric_value) {
# This returns, e.g., "Mean AUTOC RATE" if metric_value == "AUTOC_rate_mean".
# If it doesn't find a match, return the code itself.
lbl <- names(metric_choices)[which(metric_choices == metric_value)]
if (length(lbl) == 0) return(metric_value)
lbl
}
# UI Definition
ui <- fluidPage(
titlePanel("Multiscale Representations Explorer"),
tags$p(
style = "text-align: left; margin-top: -10px;",
tags$a(
href = "https://planetarycausalinference.org/",
target = "_blank",
title = "PlanetaryCausalInference.org",
style = "color: #337ab7; text-decoration: none;",
"PlanetaryCausalInference.org ",
icon("external-link", style = "font-size: 12px;")
)
),
# ---- Here is the minimal "Share" button HTML + JS inlined in Shiny ----
# We wrap it in tags$div(...) and tags$script(HTML(...)) so it is recognized
# by Shiny. You can adjust the styling or placement as needed.
tags$div(
style = "text-align: left; margin: 1em 0 1em 0em;",
HTML('
<button id="share-button"
style="
display: inline-flex;
align-items: center;
justify-content: center;
gap: 8px;
padding: 5px 10px;
font-size: 16px;
font-weight: normal;
color: #000;
background-color: #fff;
border: 1px solid #ddd;
border-radius: 6px;
cursor: pointer;
box-shadow: 0 1.5px 0 #000;
">
<svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor"
stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
<circle cx="18" cy="5" r="3"></circle>
<circle cx="6" cy="12" r="3"></circle>
<circle cx="18" cy="19" r="3"></circle>
<line x1="8.59" y1="13.51" x2="15.42" y2="17.49"></line>
<line x1="15.41" y1="6.51" x2="8.59" y2="10.49"></line>
</svg>
<strong>Share</strong>
</button>
'),
# Insert the JS as well
tags$script(
HTML("
(function() {
const shareBtn = document.getElementById('share-button');
// Reusable helper function to show a small “Copied!” message
function showCopyNotification() {
const notification = document.createElement('div');
notification.innerText = 'Copied to clipboard';
notification.style.position = 'fixed';
notification.style.bottom = '20px';
notification.style.right = '20px';
notification.style.backgroundColor = 'rgba(0, 0, 0, 0.8)';
notification.style.color = '#fff';
notification.style.padding = '8px 12px';
notification.style.borderRadius = '4px';
notification.style.zIndex = '9999';
document.body.appendChild(notification);
setTimeout(() => { notification.remove(); }, 2000);
}
shareBtn.addEventListener('click', function() {
const currentURL = window.location.href;
const pageTitle = document.title || 'Check this out!';
// If browser supports Web Share API
if (navigator.share) {
navigator.share({
title: pageTitle,
text: '',
url: currentURL
})
.catch((error) => {
console.log('Sharing failed', error);
});
} else {
// Fallback: Copy URL
if (navigator.clipboard && navigator.clipboard.writeText) {
navigator.clipboard.writeText(currentURL).then(() => {
showCopyNotification();
}, (err) => {
console.error('Could not copy text: ', err);
});
} else {
// Double fallback for older browsers
const textArea = document.createElement('textarea');
textArea.value = currentURL;
document.body.appendChild(textArea);
textArea.select();
try {
document.execCommand('copy');
showCopyNotification();
} catch (err) {
alert('Please copy this link:\\n' + currentURL);
}
document.body.removeChild(textArea);
}
}
});
})();
")
)
),
# ---- End: Minimal Share button snippet ----
sidebarLayout(
sidebarPanel(
selectInput("application", "Application",
choices = unique(sm$application),
selected = unique(sm$application)[1]),
selectInput("model", "Model",
choices = unique(sm$optimizeImageRep),
selected = "clip-rsicd"),
########################################################################
# Use our named vector 'metric_choices' directly in selectInput
########################################################################
selectInput("metric", "Metric",
choices = metric_choices,
selected = "AUTOC_rate_std_ratio_mean"),
checkboxInput("compareToBest", "Compare to best single scale", value = FALSE)
),
mainPanel(
plotOutput("heatmapPlot", height = "600px"),
div(style = "margin-top: 10px; font-style: italic;", uiOutput("contextNote"))
)
)
)
# Server Definition
server <- function(input, output) {
# Function to determine whether to maximize or minimize the metric
get_better_direction <- function(metric) {
#if (grepl("std|RMSE", metric)) "min" else "max"
if (grepl(metric, pattern = "std_mean|RMSE")) "min" else "max"
}
# Reactive data processing
filteredData <- reactive({
df <- sm %>%
filter(application == input$application,
optimizeImageRep == input$model) %>%
mutate(MaxImageDimsRight = ifelse(is.na(MaxImageDimsRight),
MaxImageDimsLeft,
MaxImageDimsRight))
if (nrow(df) == 0) return(NULL)
df
})
# Reactive expression to compute interpolated data and optimal point
interpolated_data <- reactive({
data <- filteredData()
if (is.null(data)) return(NULL)
# Group data
grouped_data <- data %>%
group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
summarise(
mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
se_metric = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()),
n = n(),
.groups = "drop"
)
better_dir <- get_better_direction(input$metric)
single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight)
best_single_scale_metric <- if (nrow(single_scale_data) > 0) {
if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE)
else min(single_scale_data$mean_metric, na.rm = TRUE)
} else NA
grouped_data <- grouped_data %>%
mutate(improvement = if (better_dir == "max") {
mean_metric - best_single_scale_metric
} else {
best_single_scale_metric - mean_metric
})
# Select z based on checkbox
z_to_interpolate <- if (input$compareToBest) grouped_data$improvement else grouped_data$mean_metric
x <- grouped_data$MaxImageDimsLeft
y <- grouped_data$MaxImageDimsRight
# Check if interpolation is possible
if (length(unique(x)) < 2 || length(unique(y)) < 2 || nrow(grouped_data) < 3) {
return(NULL)
}
# Compute interpolated grid
s_ <- akima::interp(
x = x,
y = y,
z = z_to_interpolate,
xo = seq(min(x), max(x), length = 50),
yo = seq(min(y), max(y), length = 50),
duplicate = "mean"
)
# Find optimal point from interpolated grid
max_idx <- if (input$compareToBest || better_dir == "max") {
which.max(s_$z)
} else {
which.min(s_$z)
}
row_col <- arrayInd(max_idx, .dim = dim(s_$z))
optimal_x <- s_$x[row_col[1,1]]
optimal_y <- s_$y[row_col[1,2]]
optimal_z <- s_$z[row_col[1,1], row_col[1,2]]
list(
s_ = s_,
optimal_point = list(x = optimal_x, y = optimal_y, z = optimal_z)
)
})
# Heatmap Output
output$heatmapPlot <- renderPlot({
interp_data <- interpolated_data()
if (is.null(interp_data)) {
plot.new()
text(0.5, 0.5, "Insufficient data for interpolation", cex = 1.5)
return(NULL)
}
data <- filteredData()
grouped_data <- data %>%
group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
summarise(
mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
.groups = "drop"
)
better_dir <- get_better_direction(input$metric)
single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight)
best_single_scale_metric <- if (nrow(single_scale_data) > 0) {
if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE)
else min(single_scale_data$mean_metric, na.rm = TRUE)
} else NA
grouped_data <- grouped_data %>%
mutate(improvement = if (better_dir == "max") {
mean_metric - best_single_scale_metric
} else {
best_single_scale_metric - mean_metric
})
# Retrieve the *label* for the chosen metric:
chosen_metric_label <- getMetricLabel(input$metric)
if (input$compareToBest) {
z <- grouped_data$improvement
main_title <- paste(input$application, "-", chosen_metric_label, "\n Improvement Over Best Single Scale")
} else {
z <- grouped_data$mean_metric
main_title <- paste(input$application, "-", chosen_metric_label)
}
x <- grouped_data$MaxImageDimsLeft
y <- grouped_data$MaxImageDimsRight
zlim <- range(z, na.rm = TRUE)
par(mar=c(5,5,5,1))
customPalette <- colorRampPalette(c("blue", "white", "red"))(50)
heatMap(
x = x,
y = y,
z = z,
N = 50,
main = main_title,
xlab = "Image Dimension 1",
ylab = "Image Dimension 2",
useLog = "xy",
myCol = customPalette,
cex.lab = 1.4,
zlim = zlim,
optimal_point = interp_data$optimal_point
)
})
# Contextual Note Output
output$contextNote <- renderText({
SharedContextText <- c(
"The Peru RCT involves a multifaceted graduation program treatment to reduce poverty outcomes.",
"The Uganda RCT involves a cash grant program to stimulate human capital and living conditions among the poor.",
"For more information, see the associated paper, <a href='https://arxiv.org/abs/2411.02134' target='_blank'>arXiv.org/abs/2411.02134</a>
(<a href='https://connorjerzak.com/wp-content/uploads/2024/11/MultilevelBib.txt' target='_blank'>BibTex</a>),
and <a href='https://www.youtube.com/watch?v=RvAoJGMlKAI' target='_blank'>YouTube tutorial</a>.
",
"<div style='font-size: 10px; line-height: 1.5;'>",
"<b>Glossary:</b><br>",
"• <b>Model:</b> The neural-network backbone (e.g., clip-rsicd) transforming satellite images into numerical representations.<br>",
"• <b>Metric:</b> The criterion (e.g., RATE Ratio, RMSE) measuring performance or heterogeneity detection.<br>",
"• <b>Compare to best single-scale:</b> Toggle showing metric improvement relative to the best single-scale baseline.<br>",
"• <b>ImageDim1, ImageDim2:</b> Image sizes (e.g., 64×64, 128×128) for multi-scale analysis.<br>",
"• <b>RATE Ratio:</b> A t-statistic-like quantity indicating how much a data-model combination captures treatment-effect variation. Ratio of the RATE and its standard error. It can employ two weighting scemes (AUTOC and Qini).<br>",
"• <b>PC:</b> Principal Components; a compression step of neural representations.<br>",
"• <b>MeanDiff, MeanDiff_pc:</b> Gain in RATE Ratio from multi-scale vs. single-scale, with '_pc' for compressed data.<br>",
"• <b>RMSE:</b> Root Mean Squared Error, measuring prediction accuracy in simulations.<br>",
"</div>"
)
chosen_metric_label <- getMetricLabel(input$metric)
if (input$compareToBest) {
c(
paste(
"This heatmap shows the improvement in",
paste0("'", chosen_metric_label, "'"),
"over the best single scale for",
input$application,
"using the", input$model, "model. The green star marks the optimal point."
),
SharedContextText
)
} else {
c(
paste(
"This heatmap displays",
paste0("'", chosen_metric_label, "'"),
"for", input$application,
"using the", input$model,
"model across different image dimension combinations. The green star marks the optimal point."
),
SharedContextText
)
}
})
}
# Run the Shiny App
shinyApp(ui = ui, server = server)
|