Multiscaler / app.R
cjerzak's picture
Update app.R
a22e188 verified
raw
history blame
9.7 kB
# setwd('~/Dropbox/ImageSeq/')
library(shiny)
library(dplyr)
library(fields) # For image.plot in heatMap
library(akima) # For interpolation
# Load the data from sm.csv
sm <- read.csv("sm.csv")
# Define function to convert to numeric
f2n <- function(x) as.numeric(as.character(x))
# Compute MaxImageDimsLeft and MaxImageDimsRight from MaxImageDims
sm$MaxImageDimsLeft <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[1]))
sm$MaxImageDimsRight <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[2]))
# Heatmap function with optimal_point parameter
heatMap <- function(x, y, z,
main = "",
N, yaxt = NULL,
xlab = "",
ylab = "",
horizontal = FALSE,
useLog = "",
legend.width = 1,
ylim = NULL,
xlim = NULL,
zlim = NULL,
add.legend = TRUE,
legend.only = FALSE,
vline = NULL,
col_vline = "black",
hline = NULL,
col_hline = "black",
cex.lab = 2,
cex.main = 2,
myCol = NULL,
includeMarginals = FALSE,
marginalJitterSD_x = 0.01,
marginalJitterSD_y = 0.01,
openBrowser = FALSE,
optimal_point = NULL) {
if (openBrowser) { browser() }
s_ <- akima::interp(x = x, y = y, z = z,
xo = seq(min(x), max(x), length = N),
yo = seq(min(y), max(y), length = N),
duplicate = "mean")
if (is.null(xlim)) { xlim = range(s_$x, finite = TRUE) }
if (is.null(ylim)) { ylim = range(s_$y, finite = TRUE) }
imageFxn <- if (add.legend) fields::image.plot else graphics::image
if (!grepl(useLog, pattern = "z")) {
imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = main,
cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim,
legend.width = legend.width, horizontal = horizontal, yaxt = yaxt,
zlim = zlim, legend.only = legend.only)
} else {
useLog <- gsub(useLog, pattern = "z", replace = "")
zTicks <- summary(c(s_$z))
ep_ <- 0.001
zTicks[zTicks < ep_] <- ep_
zTicks <- exp(seq(log(min(zTicks)), log(max(zTicks)), length.out = 10))
zTicks <- round(zTicks, abs(min(log(zTicks, base = 10))))
s_$z[s_$z < ep_] <- ep_
imageFxn(s_$x, s_$y, log(s_$z), yaxt = yaxt,
axis.args = list(at = log(zTicks), labels = zTicks),
main = main, cex.main = cex.main, xlab = xlab, ylab = ylab,
log = useLog, cex.lab = cex.lab, xlim = xlim, ylim = ylim,
horizontal = horizontal, col = myCol, legend.width = legend.width,
zlim = zlim, legend.only = legend.only)
}
if (!is.null(vline)) { abline(v = vline, lwd = 10, col = col_vline) }
if (!is.null(hline)) { abline(h = hline, lwd = 10, col = col_hline) }
if (includeMarginals) {
points(x + rnorm(length(y), sd = marginalJitterSD_x * sd(x)),
rep(ylim[1] * 1.1, length(y)), pch = "|", col = "darkgray")
points(rep(xlim[1] * 1.1, length(x)),
y + rnorm(length(y), sd = sd(y) * marginalJitterSD_y), pch = "-", col = "darkgray")
}
# Add green star at optimal point if provided
if (!is.null(optimal_point)) {
points(optimal_point$x, optimal_point$y, pch = 8, col = "green", cex = 3, lwd = 4)
}
}
# UI Definition
ui <- fluidPage(
titlePanel("Multiscale Heatmap Explorer"),
sidebarLayout(
sidebarPanel(
selectInput("application", "Application",
choices = unique(sm$application),
selected = unique(sm$application)[1]),
selectInput("model", "Model",
choices = unique(sm$optimizeImageRep),
selected = "clip"),
selectInput("metric", "Metric",
choices = c("AUTOC_rate_std_ratio_mean", "AUTOC_rate_mean", "AUTOC_rate_std_mean",
"AUTOC_rate_std_ratio_mean_pc", "AUTOC_rate_mean_pc", "AUTOC_rate_std_mean_pc",
"MeanVImportHalf1", "MeanVImportHalf2", "FracTopkHalf1", "RMSE"),
selected = "AUTOC_rate_std_ratio_mean"),
checkboxInput("compareToBest", "Compare to best single scale", value = FALSE)
),
mainPanel(
plotOutput("heatmapPlot", height = "600px")
)
)
)
# Server Definition
server <- function(input, output) {
# Function to determine whether to maximize or minimize the metric
get_better_direction <- function(metric) {
#if (grepl("std|RMSE", metric)) "min" else "max"
if (grepl(metric, pattern = "std_mean|RMSE")) "min" else "max"
}
# Reactive data processing
filteredData <- reactive({
df <- sm %>%
filter(application == input$application,
optimizeImageRep == input$model) %>%
mutate(MaxImageDimsRight = ifelse(is.na(MaxImageDimsRight),
MaxImageDimsLeft,
MaxImageDimsRight))
if (nrow(df) == 0) return(NULL)
df
})
# Reactive expression to compute interpolated data and optimal point
interpolated_data <- reactive({
data <- filteredData()
if (is.null(data)) return(NULL)
# Group data
grouped_data <- data %>%
group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
summarise(
mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
se_metric = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()),
n = n(),
.groups = "drop"
)
better_dir <- get_better_direction(input$metric)
single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight)
best_single_scale_metric <- if (nrow(single_scale_data) > 0) {
if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE)
else min(single_scale_data$mean_metric, na.rm = TRUE)
} else NA
grouped_data <- grouped_data %>%
mutate(improvement = if (better_dir == "max") {
mean_metric - best_single_scale_metric
} else {
best_single_scale_metric - mean_metric
})
# Select z based on checkbox
z_to_interpolate <- if (input$compareToBest) grouped_data$improvement else grouped_data$mean_metric
x <- grouped_data$MaxImageDimsLeft
y <- grouped_data$MaxImageDimsRight
# Check if interpolation is possible
if (length(unique(x)) < 2 || length(unique(y)) < 2 || nrow(grouped_data) < 3) {
return(NULL)
}
# Compute interpolated grid
s_ <- akima::interp(x = x,
y = y,
z = z_to_interpolate,
xo = seq(min(x), max(x), length = 50),
yo = seq(min(y), max(y), length = 50),
duplicate = "mean")
# Find optimal point from interpolated grid
max_idx <- if (input$compareToBest || better_dir == "max") {
which.max(s_$z)
} else {
which.min(s_$z)
}
row_col <- arrayInd(max_idx, .dim = dim(s_$z))
optimal_x <- s_$x[row_col[1,1]]
optimal_y <- s_$y[row_col[1,2]]
optimal_z <- s_$z[row_col[1,1], row_col[1,2]]
list(s_ = s_,
optimal_point = list(x = optimal_x,
y = optimal_y,
z = optimal_z))
})
# Heatmap Output
output$heatmapPlot <- renderPlot({
interp_data <- interpolated_data()
if (is.null(interp_data)) {
plot.new()
text(0.5, 0.5, "Insufficient data for interpolation", cex = 1.5)
return(NULL)
}
data <- filteredData()
grouped_data <- data %>%
group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
summarise(
mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
.groups = "drop"
)
better_dir <- get_better_direction(input$metric)
single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight)
best_single_scale_metric <- if (nrow(single_scale_data) > 0) {
if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE)
else min(single_scale_data$mean_metric, na.rm = TRUE)
} else NA
grouped_data <- grouped_data %>%
mutate(improvement = if (better_dir == "max") {
mean_metric - best_single_scale_metric
} else {
best_single_scale_metric - mean_metric
})
x <- grouped_data$MaxImageDimsLeft
y <- grouped_data$MaxImageDimsRight
if (input$compareToBest) {
z <- grouped_data$improvement
main <- paste(input$application, "-", input$metric, "improvement over best single scale")
max_abs <- max(abs(z), na.rm = TRUE)
zlim <- if (!is.na(max_abs)) c(-max_abs, max_abs) else NULL
} else {
z <- grouped_data$mean_metric
main <- paste(input$application, "-", input$metric)
zlim <- range(z, na.rm = TRUE) # Changed from zlim <- NULL
}
customPalette <- colorRampPalette(c("blue", "white", "red"))(50)
heatMap(x = x,
y = y,
z = z,
N = 50,
main = main,
xlab = "Image Dimension 1",
ylab = "Image Dimensions 2",
useLog = "xy",
myCol = customPalette,
cex.lab = 1.4,
zlim = zlim,
optimal_point = interp_data$optimal_point)
})
}
# Run the Shiny App
shinyApp(ui = ui, server = server)