cjerzak commited on
Commit
5204b6f
·
verified ·
1 Parent(s): 4c8e2c4

Update app.R

Browse files
Files changed (1) hide show
  1. app.R +444 -230
app.R CHANGED
@@ -1,4 +1,4 @@
1
- # setwd('~/Dropbox/ImageSeq/')
2
 
3
  options(error = NULL)
4
  library(shiny)
@@ -7,16 +7,48 @@ library(fields) # For image.plot in heatMap
7
  library(akima) # For interpolation
8
 
9
  # Load the data from sm.csv
10
- sm <- read.csv("sm.csv")
 
 
 
 
 
 
 
11
 
12
  # Define function to convert to numeric
13
  f2n <- function(x) as.numeric(as.character(x))
14
 
15
  # Compute MaxImageDimsLeft and MaxImageDimsRight from MaxImageDims
16
- sm$MaxImageDimsLeft <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[1]))
17
- sm$MaxImageDimsRight <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[2]))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
- # Heatmap function with optimal_point parameter
 
 
 
 
20
  heatMap <- function(x, y, z,
21
  main = "",
22
  N, yaxt = NULL,
@@ -34,8 +66,8 @@ heatMap <- function(x, y, z,
34
  col_vline = "black",
35
  hline = NULL,
36
  col_hline = "black",
37
- cex.lab = 2,
38
- cex.main = 2,
39
  myCol = NULL,
40
  includeMarginals = FALSE,
41
  marginalJitterSD_x = 0.01,
@@ -43,13 +75,48 @@ heatMap <- function(x, y, z,
43
  openBrowser = FALSE,
44
  optimal_point = NULL) {
45
  if (openBrowser) { browser() }
46
- s_ <- akima::interp(x = x, y = y, z = z,
47
- xo = seq(min(x), max(x), length = N),
48
- yo = seq(min(y), max(y), length = N),
49
- duplicate = "mean")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  if (is.null(xlim)) { xlim = range(s_$x, finite = TRUE) }
51
  if (is.null(ylim)) { ylim = range(s_$y, finite = TRUE) }
 
 
 
 
52
  imageFxn <- if (add.legend) fields::image.plot else graphics::image
 
53
  if (!grepl(useLog, pattern = "z")) {
54
  imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = main,
55
  cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim,
@@ -57,32 +124,47 @@ heatMap <- function(x, y, z,
57
  zlim = zlim, legend.only = legend.only)
58
  } else {
59
  useLog <- gsub(useLog, pattern = "z", replace = "")
60
- zTicks <- summary(c(s_$z))
61
- ep_ <- 0.001
62
- zTicks[zTicks < ep_] <- ep_
63
- zTicks <- exp(seq(log(min(zTicks)), log(max(zTicks)), length.out = 10))
64
- zTicks <- round(zTicks, abs(min(log(zTicks, base = 10))))
65
- s_$z[s_$z < ep_] <- ep_
66
- imageFxn(s_$x, s_$y, log(s_$z), yaxt = yaxt,
67
- axis.args = list(at = log(zTicks), labels = zTicks),
68
- main = main, cex.main = cex.main, xlab = xlab, ylab = ylab,
69
- log = useLog, cex.lab = cex.lab, xlim = xlim, ylim = ylim,
70
- horizontal = horizontal, col = myCol, legend.width = legend.width,
71
- zlim = zlim, legend.only = legend.only)
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  }
73
- if (!is.null(vline)) { abline(v = vline, lwd = 10, col = col_vline) }
74
- if (!is.null(hline)) { abline(h = hline, lwd = 10, col = col_hline) }
75
 
76
  if (includeMarginals) {
77
- points(x + rnorm(length(y), sd = marginalJitterSD_x * sd(x)),
78
- rep(ylim[1] * 1.1, length(y)), pch = "|", col = "darkgray")
79
- points(rep(xlim[1] * 1.1, length(x)),
80
- y + rnorm(length(y), sd = sd(y) * marginalJitterSD_y), pch = "-", col = "darkgray")
 
 
81
  }
82
 
83
- # Add green star at optimal point if provided
84
- if (!is.null(optimal_point)) {
85
- points(optimal_point$x, optimal_point$y, pch = 8, col = "green", cex = 3, lwd = 4)
86
  }
87
  }
88
 
@@ -98,9 +180,9 @@ metric_choices <- c(
98
  "Mean AUTOC RATE Ratio with PC" = "AUTOC_rate_std_ratio_mean_pc",
99
  "Mean AUTOC RATE with PC" = "AUTOC_rate_mean_pc",
100
  "Mean SD of AUTOC RATE with PC" = "AUTOC_rate_std_mean_pc",
101
- "Mean Variable Importance (Image 1)" = "MeanVImportHalf1",
102
- "Mean Variable Importance (Image 2)" = "MeanVImportHalf2",
103
- "Mean Fraction of Top k Features (Image 1)" = "FracTopkHalf1",
104
  "Mean RMSE" = "RMSE"
105
  )
106
 
@@ -111,70 +193,65 @@ getMetricLabel <- function(metric_value) {
111
  # This returns, e.g., "Mean AUTOC RATE" if metric_value == "AUTOC_rate_mean".
112
  # If it doesn't find a match, return the code itself.
113
  lbl <- names(metric_choices)[which(metric_choices == metric_value)]
114
- if (length(lbl) == 0) return(metric_value)
115
  lbl
116
  }
117
 
118
  # UI Definition
119
  ui <- fluidPage(
 
 
120
  tags$head(
121
- # Make the layout fluid on phones
122
- tags$meta(name = "viewport",
123
- content = "width=device-width, initial-scale=1"),
124
-
125
- # Tiny CSS tweaks that only activate below 576 px
126
  tags$style(HTML("
127
- @media (max-width: 575.98px) {
128
- /* shrink side padding so the sidebar fits */
129
- .sidebar-panel, .panel-body, .form-group {padding-left:8px !important; padding-right:8px !important;}
130
-
131
- /* make the Share button & inputs finger‑friendly */
132
- #share-button {font-size: 0.9rem; padding: 6px 10px;}
133
- select.form-control {font-size: 0.9rem; height: 36px;}
134
-
135
- /* relax margins in the heading paragraph */
136
- p {margin-bottom: 0.6rem;}
137
- }
138
- "))
 
139
  ),
140
 
141
- titlePanel("Multiscale Representations Explorer"),
142
-
143
  tags$p(
144
- style = "text-align: left; margin-top: -10px;",
145
  tags$a(
146
  href = "https://planetarycausalinference.org/",
147
  target = "_blank",
148
  title = "PlanetaryCausalInference.org",
149
- style = "color: #337ab7; text-decoration: none;",
150
  "PlanetaryCausalInference.org ",
151
  icon("external-link", style = "font-size: 12px;")
152
  )
153
  ),
154
 
155
- # ---- Here is the minimal "Share" button HTML + JS inlined in Shiny ----
156
- # We wrap it in tags$div(...) and tags$script(HTML(...)) so it is recognized
157
- # by Shiny. You can adjust the styling or placement as needed.
158
  tags$div(
159
- style = "text-align: left; margin: 1em 0 1em 0em;",
160
  HTML('
161
- <button id="share-button"
162
  style="
163
  display: inline-flex;
164
  align-items: center;
165
  justify-content: center;
166
- gap: 8px;
167
  padding: 5px 10px;
168
- font-size: 16px;
169
  font-weight: normal;
170
- color: #000;
171
- background-color: #fff;
172
- border: 1px solid #ddd;
173
- border-radius: 6px;
174
  cursor: pointer;
175
- box-shadow: 0 1.5px 0 #000;
176
  ">
177
- <svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor"
178
  stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
179
  <circle cx="18" cy="5" r="3"></circle>
180
  <circle cx="6" cy="12" r="3"></circle>
@@ -185,247 +262,383 @@ ui <- fluidPage(
185
  <strong>Share</strong>
186
  </button>
187
  '),
188
- # Insert the JS as well
189
  tags$script(
190
  HTML("
191
- (function() {
192
- const shareBtn = document.getElementById('share-button');
193
- // Reusable helper function to show a small “Copied!” message
194
- function showCopyNotification() {
195
- const notification = document.createElement('div');
196
- notification.innerText = 'Copied to clipboard';
197
- notification.style.position = 'fixed';
198
- notification.style.bottom = '20px';
199
- notification.style.right = '20px';
200
- notification.style.backgroundColor = 'rgba(0, 0, 0, 0.8)';
201
- notification.style.color = '#fff';
202
- notification.style.padding = '8px 12px';
203
- notification.style.borderRadius = '4px';
204
- notification.style.zIndex = '9999';
205
- document.body.appendChild(notification);
206
- setTimeout(() => { notification.remove(); }, 2000);
207
- }
208
- shareBtn.addEventListener('click', function() {
209
- const currentURL = window.location.href;
210
- const pageTitle = document.title || 'Check this out!';
211
- // If browser supports Web Share API
212
- if (navigator.share) {
213
- navigator.share({
214
- title: pageTitle,
215
- text: '',
216
- url: currentURL
217
- })
218
- .catch((error) => {
219
- console.log('Sharing failed', error);
220
- });
221
- } else {
222
- // Fallback: Copy URL
223
- if (navigator.clipboard && navigator.clipboard.writeText) {
224
- navigator.clipboard.writeText(currentURL).then(() => {
225
- showCopyNotification();
226
- }, (err) => {
227
- console.error('Could not copy text: ', err);
228
- });
229
- } else {
230
- // Double fallback for older browsers
231
- const textArea = document.createElement('textarea');
232
- textArea.value = currentURL;
233
- document.body.appendChild(textArea);
234
- textArea.select();
235
- try {
236
- document.execCommand('copy');
237
- showCopyNotification();
238
- } catch (err) {
239
- alert('Please copy this link:\\n' + currentURL);
240
- }
241
- document.body.removeChild(textArea);
242
- }
243
- }
244
- });
245
- })();
246
- ")
 
 
 
 
 
 
 
 
 
247
  )
248
  ),
249
- # ---- End: Minimal Share button snippet ----
250
 
251
 
252
  sidebarLayout(
253
  sidebarPanel(
254
- selectInput("application", "Application",
 
255
  choices = unique(sm$application),
256
  selected = unique(sm$application)[1]),
257
- selectInput("model", "Model",
258
  choices = unique(sm$optimizeImageRep),
259
  selected = "clip-rsicd"),
260
 
261
  ########################################################################
262
  # Use our named vector 'metric_choices' directly in selectInput
263
  ########################################################################
264
- selectInput("metric", "Metric",
265
  choices = metric_choices,
266
  selected = "AUTOC_rate_std_ratio_mean"),
267
 
268
- checkboxInput("compareToBest", "Compare to best single scale", value = FALSE)
 
 
 
 
269
  ),
270
  mainPanel(
271
- plotOutput("heatmapPlot", width = "100%"),
272
- div(style = "margin-top: 10px; font-style: italic;", uiOutput("contextNote"))
 
 
 
 
 
 
273
  )
274
  )
275
  )
276
 
277
  # Server Definition
278
- server <- function(input, output) {
279
  # Function to determine whether to maximize or minimize the metric
280
- get_better_direction <- function(metric) {
281
- #if (grepl("std|RMSE", metric)) "min" else "max"
282
- if (grepl(metric, pattern = "std_mean|RMSE")) "min" else "max"
 
 
 
 
283
  }
284
 
285
  # Reactive data processing
286
  filteredData <- reactive({
 
 
287
  df <- sm %>%
288
  filter(application == input$application,
289
  optimizeImageRep == input$model) %>%
290
- mutate(MaxImageDimsRight = ifelse(is.na(MaxImageDimsRight),
291
- MaxImageDimsLeft,
292
- MaxImageDimsRight))
293
- if (nrow(df) == 0) return(NULL)
 
 
 
 
 
 
 
 
 
294
  df
295
  })
296
 
297
- # Reactive expression to compute interpolated data and optimal point
298
- interpolated_data <- reactive({
299
  data <- filteredData()
300
- if (is.null(data)) return(NULL)
301
 
302
  # Group data
303
  grouped_data <- data %>%
304
  group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
305
  summarise(
306
- mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
307
- se_metric = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()),
308
  n = n(),
309
  .groups = "drop"
310
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
311
 
312
  better_dir <- get_better_direction(input$metric)
 
 
313
  single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight)
314
  best_single_scale_metric <- if (nrow(single_scale_data) > 0) {
315
- if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE)
316
- else min(single_scale_data$mean_metric, na.rm = TRUE)
317
- } else NA
318
-
319
- grouped_data <- grouped_data %>%
320
- mutate(improvement = if (better_dir == "max") {
321
- mean_metric - best_single_scale_metric
322
  } else {
323
- best_single_scale_metric - mean_metric
324
- })
325
-
326
- # Select z based on checkbox
327
- z_to_interpolate <- if (input$compareToBest) grouped_data$improvement else grouped_data$mean_metric
328
- x <- grouped_data$MaxImageDimsLeft
329
- y <- grouped_data$MaxImageDimsRight
330
-
331
- # Check if interpolation is possible
332
- if (length(unique(x)) < 2 || length(unique(y)) < 2 || nrow(grouped_data) < 3) {
333
- return(NULL)
334
  }
335
 
336
- # Compute interpolated grid
337
- s_ <- akima::interp(
338
- x = x,
339
- y = y,
340
- z = z_to_interpolate,
341
- xo = seq(min(x), max(x), length = 50),
342
- yo = seq(min(y), max(y), length = 50),
343
- duplicate = "mean"
344
- )
345
-
346
- # Find optimal point from interpolated grid
347
- max_idx <- if (input$compareToBest || better_dir == "max") {
348
- which.max(s_$z)
349
  } else {
350
- which.min(s_$z)
 
 
 
 
351
  }
352
- row_col <- arrayInd(max_idx, .dim = dim(s_$z))
353
- optimal_x <- s_$x[row_col[1,1]]
354
- optimal_y <- s_$y[row_col[1,2]]
355
- optimal_z <- s_$z[row_col[1,1], row_col[1,2]]
356
 
357
  list(
358
- s_ = s_,
359
- optimal_point = list(x = optimal_x, y = optimal_y, z = optimal_z)
 
360
  )
361
  })
362
 
363
- # Heatmap Output
364
- output$heatmapPlot <- renderPlot(
365
- {
366
- interp_data <- interpolated_data()
367
- if (is.null(interp_data)) {
368
- plot.new()
369
- text(0.5, 0.5, "Insufficient data for interpolation", cex = 1.5)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370
  return(NULL)
371
  }
372
 
373
- data <- filteredData()
374
- grouped_data <- data %>%
375
- group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
376
- summarise(
377
- mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
378
- .groups = "drop"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379
  )
 
 
 
 
380
 
381
- better_dir <- get_better_direction(input$metric)
382
- single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight)
383
- best_single_scale_metric <- if (nrow(single_scale_data) > 0) {
384
- if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE)
385
- else min(single_scale_data$mean_metric, na.rm = TRUE)
386
- } else NA
387
 
388
- grouped_data <- grouped_data %>%
389
- mutate(improvement = if (better_dir == "max") {
390
- mean_metric - best_single_scale_metric
 
 
 
 
 
 
 
 
 
 
 
391
  } else {
392
- best_single_scale_metric - mean_metric
393
- })
 
 
 
 
 
 
 
 
394
 
395
- # Retrieve the *label* for the chosen metric:
396
- chosen_metric_label <- getMetricLabel(input$metric)
 
 
 
 
 
 
 
 
 
 
397
 
398
- if (input$compareToBest) {
 
 
 
 
 
 
 
 
 
399
  z <- grouped_data$improvement
400
- main_title <- paste(input$application, "-", chosen_metric_label, "\n Improvement Over Best Single Scale")
 
 
 
 
 
 
 
401
  } else {
402
  z <- grouped_data$mean_metric
403
- main_title <- paste(input$application, "-", chosen_metric_label)
 
 
 
 
404
  }
405
 
406
  x <- grouped_data$MaxImageDimsLeft
407
  y <- grouped_data$MaxImageDimsRight
408
- zlim <- range(z, na.rm = TRUE)
409
 
410
- par(mar=c(5,5,5,1))
411
- customPalette <- colorRampPalette(c("blue", "white", "red"))(50)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412
  heatMap(
413
- x = x,
414
- y = y,
415
- z = z,
416
- N = 50,
417
  main = main_title,
418
- xlab = "Image Dimension 1",
419
- ylab = "Image Dimension 2",
420
- useLog = "xy",
421
  myCol = customPalette,
422
- cex.lab = 1.4,
423
- zlim = zlim,
424
- optimal_point = interp_data$optimal_point
 
 
 
425
  )
426
- })
 
427
 
428
- # Contextual Note Output
429
  output$contextNote <- renderText({
430
  SharedContextText <- c(
431
  "The Peru RCT involves a multifaceted graduation program treatment to reduce poverty outcomes.",
@@ -473,6 +686,7 @@ server <- function(input, output) {
473
  )
474
  }
475
  })
 
476
  }
477
 
478
  # Run the Shiny App
 
1
+ # setwd('~/Dropbox/ImageSeq/') # Set your working directory if needed
2
 
3
  options(error = NULL)
4
  library(shiny)
 
7
  library(akima) # For interpolation
8
 
9
  # Load the data from sm.csv
10
+ # Ensure 'sm.csv' is in the same directory as the app.R file or provide the full path.
11
+ # Add error handling for file loading
12
+ sm <- tryCatch({
13
+ read.csv("sm.csv")
14
+ }, error = function(e) {
15
+ stop("Error loading sm.csv: ", e$message, "\nPlease ensure 'sm.csv' is in the application directory.")
16
+ })
17
+
18
 
19
  # Define function to convert to numeric
20
  f2n <- function(x) as.numeric(as.character(x))
21
 
22
  # Compute MaxImageDimsLeft and MaxImageDimsRight from MaxImageDims
23
+ # Handle potential errors if split doesn't work as expected
24
+ sm$MaxImageDimsLeft <- tryCatch({
25
+ unlist(lapply(strsplit(as.character(sm$MaxImageDims), split = "_"), function(x) sort(f2n(x))[1]))
26
+ }, error = function(e) {
27
+ warning("Could not parse MaxImageDimsLeft from MaxImageDims. Check format (e.g., '64_128').")
28
+ NA # Assign NA or a default value
29
+ })
30
+
31
+ sm$MaxImageDimsRight <- tryCatch({
32
+ unlist(lapply(strsplit(as.character(sm$MaxImageDims), split = "_"), function(x) sort(f2n(x))[2]))
33
+ }, error = function(e) {
34
+ warning("Could not parse MaxImageDimsRight from MaxImageDims. Check format (e.g., '64_128').")
35
+ NA # Assign NA or a default value
36
+ })
37
+
38
+ # Handle cases where parsing might have failed or where Right dim might be missing for single scale
39
+ sm <- sm %>%
40
+ mutate(
41
+ MaxImageDimsLeft = f2n(MaxImageDimsLeft), # Ensure numeric
42
+ MaxImageDimsRight = f2n(MaxImageDimsRight), # Ensure numeric
43
+ # If Right is NA after parsing (or originally missing), assume it's the same as Left (single scale)
44
+ MaxImageDimsRight = ifelse(is.na(MaxImageDimsRight), MaxImageDimsLeft, MaxImageDimsRight)
45
+ )
46
 
47
+ # Remove rows where essential dimensions couldn't be determined
48
+ sm <- sm %>% filter(!is.na(MaxImageDimsLeft) & !is.na(MaxImageDimsRight))
49
+
50
+
51
+ # Heatmap function (no significant changes needed here, aesthetics controlled in server)
52
  heatMap <- function(x, y, z,
53
  main = "",
54
  N, yaxt = NULL,
 
66
  col_vline = "black",
67
  hline = NULL,
68
  col_hline = "black",
69
+ cex.lab = 1.3, # Default adjusted slightly
70
+ cex.main = 1.5, # Default adjusted slightly
71
  myCol = NULL,
72
  includeMarginals = FALSE,
73
  marginalJitterSD_x = 0.01,
 
75
  openBrowser = FALSE,
76
  optimal_point = NULL) {
77
  if (openBrowser) { browser() }
78
+
79
+ # Ensure finite values for interpolation range finding
80
+ finite_x <- x[is.finite(x)]
81
+ finite_y <- y[is.finite(y)]
82
+ if(length(finite_x) == 0 || length(finite_y) == 0) {
83
+ warning("Insufficient finite x or y data for interpolation range.")
84
+ return(NULL) # Cannot proceed
85
+ }
86
+ min_x <- min(finite_x, na.rm = TRUE)
87
+ max_x <- max(finite_x, na.rm = TRUE)
88
+ min_y <- min(finite_y, na.rm = TRUE)
89
+ max_y <- max(finite_y, na.rm = TRUE)
90
+
91
+ # Ensure xo and yo sequences are valid
92
+ if (min_x == max_x) { max_x <- min_x + 1e-6 } # Avoid zero range
93
+ if (min_y == max_y) { max_y <- min_y + 1e-6 } # Avoid zero range
94
+
95
+ xo_seq <- seq(min_x, max_x, length = N)
96
+ yo_seq <- seq(min_y, max_y, length = N)
97
+
98
+ # Perform interpolation
99
+ s_ <- tryCatch({
100
+ akima::interp(x = x, y = y, z = z,
101
+ xo = xo_seq,
102
+ yo = yo_seq,
103
+ duplicate = "mean",
104
+ linear = TRUE) # Use linear interpolation by default
105
+ }, error = function(e) {
106
+ warning("Akima interpolation failed: ", e$message)
107
+ return(NULL) # Return NULL if interp fails
108
+ })
109
+
110
+ if (is.null(s_)) return(NULL) # Exit if interpolation failed
111
+
112
  if (is.null(xlim)) { xlim = range(s_$x, finite = TRUE) }
113
  if (is.null(ylim)) { ylim = range(s_$y, finite = TRUE) }
114
+
115
+ # Default color palette if none provided
116
+ if (is.null(myCol)) { myCol = hcl.colors(50, palette = "YlOrRd", rev = TRUE) }
117
+
118
  imageFxn <- if (add.legend) fields::image.plot else graphics::image
119
+
120
  if (!grepl(useLog, pattern = "z")) {
121
  imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = main,
122
  cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim,
 
124
  zlim = zlim, legend.only = legend.only)
125
  } else {
126
  useLog <- gsub(useLog, pattern = "z", replace = "")
127
+ z_finite <- s_$z[is.finite(s_$z)]
128
+ if (length(z_finite) == 0 || all(z_finite <= 0)) {
129
+ warning("Cannot compute log scale for z: All finite values are non-positive.")
130
+ # Fallback to non-log scale or plot without z-log
131
+ imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = paste(main, "(z-log failed)"),
132
+ cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim,
133
+ legend.width = legend.width, horizontal = horizontal, yaxt = yaxt,
134
+ zlim = zlim, legend.only = legend.only)
135
+
136
+ } else {
137
+ zTicks <- pretty(range(log(z_finite[z_finite > 0]), na.rm = TRUE), n = 5) # Use pretty for nice log ticks
138
+ zTickLabels <- signif(exp(zTicks), 2) # Nicer labels
139
+ # ep_ <- min(z_finite[z_finite > 0], na.rm=TRUE) * 0.1 # Small positive value based on data
140
+ ep_ <- 1e-9 # Or a small fixed epsilon
141
+
142
+ s_$z[s_$z <= ep_] <- ep_ # Replace non-positive with epsilon for log
143
+
144
+ imageFxn(s_$x, s_$y, log(s_$z), yaxt = yaxt,
145
+ axis.args = list(at = zTicks, labels = zTickLabels),
146
+ main = main, cex.main = cex.main, xlab = xlab, ylab = ylab,
147
+ log = useLog, cex.lab = cex.lab, xlim = xlim, ylim = ylim,
148
+ horizontal = horizontal, col = myCol, legend.width = legend.width,
149
+ zlim = if(!is.null(zlim)) log(zlim) else NULL, # Apply log to zlim if provided
150
+ legend.only = legend.only)
151
+ }
152
  }
153
+ if (!is.null(vline)) { abline(v = vline, lwd = 3, col = col_vline, lty = 2) } # Thinner, dashed line
154
+ if (!is.null(hline)) { abline(h = hline, lwd = 3, col = col_hline, lty = 2) } # Thinner, dashed line
155
 
156
  if (includeMarginals) {
157
+ points(x + rnorm(length(y), sd = marginalJitterSD_x * sd(x, na.rm = TRUE)), # Added na.rm
158
+ rep(ylim[1] + 0.02 * diff(ylim), length(y)), # Adjust position slightly off bottom
159
+ pch = "|", col = "darkgray")
160
+ points(rep(xlim[1] + 0.02 * diff(xlim), length(x)), # Adjust position slightly off left
161
+ y + rnorm(length(y), sd = sd(y, na.rm = TRUE) * marginalJitterSD_y), # Added na.rm
162
+ pch = "-", col = "darkgray")
163
  }
164
 
165
+ # Add green star at optimal point if provided and valid
166
+ if (!is.null(optimal_point) && is.finite(optimal_point$x) && is.finite(optimal_point$y)) {
167
+ points(optimal_point$x, optimal_point$y, pch = 8, col = "green", cex = 2.5, lwd = 3) # Slightly smaller star
168
  }
169
  }
170
 
 
180
  "Mean AUTOC RATE Ratio with PC" = "AUTOC_rate_std_ratio_mean_pc",
181
  "Mean AUTOC RATE with PC" = "AUTOC_rate_mean_pc",
182
  "Mean SD of AUTOC RATE with PC" = "AUTOC_rate_std_mean_pc",
183
+ "Mean Variable Importance (Img 1)" = "MeanVImportHalf1", # Shorter label
184
+ "Mean Variable Importance (Img 2)" = "MeanVImportHalf2", # Shorter label
185
+ "Mean Frac Top k Feats (Img 1)" = "FracTopkHalf1", # Shorter label
186
  "Mean RMSE" = "RMSE"
187
  )
188
 
 
193
  # This returns, e.g., "Mean AUTOC RATE" if metric_value == "AUTOC_rate_mean".
194
  # If it doesn't find a match, return the code itself.
195
  lbl <- names(metric_choices)[which(metric_choices == metric_value)]
196
+ if (length(lbl) == 0 || is.na(lbl)) return(metric_value) # Handle NA/no match
197
  lbl
198
  }
199
 
200
  # UI Definition
201
  ui <- fluidPage(
202
+ titlePanel("Multiscale Representations Explorer"),
203
+
204
  tags$head(
205
+ # Add some basic CSS for better spacing/responsiveness if needed
 
 
 
 
206
  tags$style(HTML("
207
+ .shiny-plot-output { /* Ensure plot output behaves well */
208
+ margin: auto; /* Center if container allows */
209
+ }
210
+ .control-label { /* Ensure labels are readable */
211
+ font-weight: bold;
212
+ }
213
+ #contextNote { /* Style for the context note */
214
+ margin-top: 15px;
215
+ font-size: 0.9em; /* Slightly smaller font */
216
+ line-height: 1.6; /* Better readability */
217
+ }
218
+ #share-button { margin-bottom: 15px; } /* Add space below share button */
219
+ "))
220
  ),
221
 
 
 
222
  tags$p(
223
+ style = "text-align: left; margin-top: -10px; margin-bottom: 10px;", # Added margin-bottom
224
  tags$a(
225
  href = "https://planetarycausalinference.org/",
226
  target = "_blank",
227
  title = "PlanetaryCausalInference.org",
228
+ style = "color: #337ab7; text-decoration: none; font-weight: bold;", # Make link bold
229
  "PlanetaryCausalInference.org ",
230
  icon("external-link", style = "font-size: 12px;")
231
  )
232
  ),
233
 
234
+ # ---- Share button HTML + JS ----
 
 
235
  tags$div(
236
+ style = "text-align: left;", # Removed fixed margin
237
  HTML('
238
+ <button id="share-button"
239
  style="
240
  display: inline-flex;
241
  align-items: center;
242
  justify-content: center;
243
+ gap: 8px;
244
  padding: 5px 10px;
245
+ font-size: 14px; /* Slightly smaller font */
246
  font-weight: normal;
247
+ color: #333; /* Darker text */
248
+ background-color: #f8f9fa; /* Lighter background */
249
+ border: 1px solid #ccc; /* Lighter border */
250
+ border-radius: 4px; /* Smaller radius */
251
  cursor: pointer;
252
+ box-shadow: 0 1px 1px rgba(0,0,0,0.05); /* Softer shadow */
253
  ">
254
+ <svg width="16" height="16" viewBox="0 0 24 24" fill="none" stroke="currentColor"
255
  stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
256
  <circle cx="18" cy="5" r="3"></circle>
257
  <circle cx="6" cy="12" r="3"></circle>
 
262
  <strong>Share</strong>
263
  </button>
264
  '),
 
265
  tags$script(
266
  HTML("
267
+ (function() {
268
+ const shareBtn = document.getElementById('share-button');
269
+ if (!shareBtn) return; // Exit if button not found
270
+
271
+ function showCopyNotification() {
272
+ const notification = document.createElement('div');
273
+ notification.innerText = 'Link copied!'; /* Shorter message */
274
+ notification.style.position = 'fixed';
275
+ notification.style.bottom = '15px'; /* Adjust position */
276
+ notification.style.left = '50%'; /* Center horizontally */
277
+ notification.style.transform = 'translateX(-50%)'; /* Correct centering */
278
+ notification.style.backgroundColor = 'rgba(0, 0, 0, 0.75)';
279
+ notification.style.color = '#fff';
280
+ notification.style.padding = '8px 15px'; /* Adjust padding */
281
+ notification.style.borderRadius = '4px';
282
+ notification.style.fontSize = '14px'; /* Match button font */
283
+ notification.style.zIndex = '10000'; /* Ensure visibility */
284
+ notification.style.boxShadow = '0 2px 5px rgba(0,0,0,0.2)'; /* Add shadow */
285
+ document.body.appendChild(notification);
286
+ setTimeout(() => { notification.remove(); }, 1500); /* Shorter duration */
287
+ }
288
+
289
+ shareBtn.addEventListener('click', function() {
290
+ const currentURL = window.location.href;
291
+ const pageTitle = document.title || 'Multiscale Explorer';
292
+
293
+ if (navigator.share) {
294
+ navigator.share({
295
+ title: pageTitle,
296
+ text: 'Check out this multiscale analysis:', /* Add context */
297
+ url: currentURL
298
+ })
299
+ .catch((error) => {
300
+ // If user cancels share, don't log error unless it's a real failure
301
+ if (error.name !== 'AbortError') {
302
+ console.log('Sharing failed', error);
303
+ }
304
+ });
305
+ } else if (navigator.clipboard && navigator.clipboard.writeText) {
306
+ navigator.clipboard.writeText(currentURL).then(() => {
307
+ showCopyNotification();
308
+ }, (err) => {
309
+ console.error('Could not copy text: ', err);
310
+ // Fallback alert if clipboard fails unexpectedly
311
+ alert('Failed to copy link. Please copy manually:\\n' + currentURL);
312
+ });
313
+ } else {
314
+ // Basic fallback for very old browsers
315
+ try {
316
+ const textArea = document.createElement('textarea');
317
+ textArea.value = currentURL;
318
+ textArea.style.position = 'fixed'; // Prevent scrolling
319
+ textArea.style.opacity = '0'; // Hide element
320
+ document.body.appendChild(textArea);
321
+ textArea.select();
322
+ document.execCommand('copy');
323
+ showCopyNotification();
324
+ document.body.removeChild(textArea);
325
+ } catch (err) {
326
+ alert('Sharing not supported. Please copy this link manually:\\n' + currentURL);
327
+ }
328
+ }
329
+ });
330
+ })();
331
+ ")
332
  )
333
  ),
334
+ # ---- End: Share button snippet ----
335
 
336
 
337
  sidebarLayout(
338
  sidebarPanel(
339
+ width = 3, # Explicitly set sidebar width (adjust as needed 1-12)
340
+ selectInput("application", "Application:", # Colon for clarity
341
  choices = unique(sm$application),
342
  selected = unique(sm$application)[1]),
343
+ selectInput("model", "Model:",
344
  choices = unique(sm$optimizeImageRep),
345
  selected = "clip-rsicd"),
346
 
347
  ########################################################################
348
  # Use our named vector 'metric_choices' directly in selectInput
349
  ########################################################################
350
+ selectInput("metric", "Metric:",
351
  choices = metric_choices,
352
  selected = "AUTOC_rate_std_ratio_mean"),
353
 
354
+ checkboxInput("compareToBest", "Compare to best single scale?", value = FALSE), # Question format
355
+
356
+ # Add some explanation directly in the sidebar
357
+ tags$hr(), # Horizontal line separator
358
+ tags$p(tags$small("Adjust parameters to explore how multiscale image representations impact model performance or heterogeneity discovery across different applications."))
359
  ),
360
  mainPanel(
361
+ width = 9, # Explicitly set main panel width (should sum to 12 with sidebar)
362
+ # Wrap plot in a div for potential future styling/sizing control
363
+ div(
364
+ # *** ADJUSTED PLOT OUTPUT ***
365
+ plotOutput("heatmapPlot", height = "500px", width = "100%")
366
+ ),
367
+ # Use uiOutput for potentially HTML content in the note
368
+ uiOutput("contextNote")
369
  )
370
  )
371
  )
372
 
373
  # Server Definition
374
+ server <- function(input, output, session) { # Add session argument
375
  # Function to determine whether to maximize or minimize the metric
376
+ get_better_direction <- function(metric_value) {
377
+ # Assuming lower SD and lower RMSE are better
378
+ if (grepl("std_mean|RMSE", metric_value, ignore.case = TRUE)) {
379
+ "min"
380
+ } else {
381
+ "max" # Assume higher is better for others (RATE, Ratio, VImport, FracTopk)
382
+ }
383
  }
384
 
385
  # Reactive data processing
386
  filteredData <- reactive({
387
+ req(input$application, input$model) # Ensure inputs are available
388
+
389
  df <- sm %>%
390
  filter(application == input$application,
391
  optimizeImageRep == input$model) %>%
392
+ # Ensure dimensions are numeric before filtering/grouping
393
+ mutate(
394
+ MaxImageDimsLeft = as.numeric(MaxImageDimsLeft),
395
+ MaxImageDimsRight = as.numeric(MaxImageDimsRight),
396
+ metric_value = as.numeric(get(input$metric)) # Get chosen metric value
397
+ ) %>%
398
+ filter(is.finite(MaxImageDimsLeft) & is.finite(MaxImageDimsRight) & is.finite(metric_value)) # Keep only valid rows
399
+
400
+ # Check if data exists after filtering
401
+ if (nrow(df) == 0) {
402
+ warning("No valid data found for the selected Application/Model/Metric combination.")
403
+ return(NULL)
404
+ }
405
  df
406
  })
407
 
408
+ # Reactive expression to compute grouped/summarized data and best single scale
409
+ summaryData <- reactive({
410
  data <- filteredData()
411
+ req(data) # Require filtered data
412
 
413
  # Group data
414
  grouped_data <- data %>%
415
  group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
416
  summarise(
417
+ mean_metric = mean(metric_value, na.rm = TRUE),
418
+ se_metric = sd(metric_value, na.rm = TRUE) / sqrt(n()),
419
  n = n(),
420
  .groups = "drop"
421
+ ) %>%
422
+ filter(is.finite(mean_metric)) # Ensure mean is valid after aggregation
423
+
424
+ if (nrow(grouped_data) < 3) {
425
+ warning("Less than 3 unique dimension pairs after grouping. Cannot interpolate.")
426
+ return(NULL) # Not enough data points for reliable interpolation
427
+ }
428
+
429
+ # Check variability in dimensions needed for interpolation
430
+ if (length(unique(grouped_data$MaxImageDimsLeft)) < 2 || length(unique(grouped_data$MaxImageDimsRight)) < 2) {
431
+ warning("Insufficient variability in one or both image dimensions for interpolation.")
432
+ return(NULL)
433
+ }
434
+
435
 
436
  better_dir <- get_better_direction(input$metric)
437
+
438
+ # Calculate best single scale metric *from the summarized data*
439
  single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight)
440
  best_single_scale_metric <- if (nrow(single_scale_data) > 0) {
441
+ if (better_dir == "max") {
442
+ max(single_scale_data$mean_metric, na.rm = TRUE)
 
 
 
 
 
443
  } else {
444
+ min(single_scale_data$mean_metric, na.rm = TRUE)
445
+ }
446
+ } else {
447
+ NA # No single scale data available for comparison
 
 
 
 
 
 
 
448
  }
449
 
450
+ # Calculate improvement only if best_single_scale_metric is valid
451
+ if (is.finite(best_single_scale_metric)) {
452
+ grouped_data <- grouped_data %>%
453
+ mutate(improvement = if (better_dir == "max") {
454
+ mean_metric - best_single_scale_metric
455
+ } else {
456
+ best_single_scale_metric - mean_metric
457
+ })
 
 
 
 
 
458
  } else {
459
+ # If no valid single-scale baseline, improvement cannot be calculated
460
+ grouped_data <- grouped_data %>% mutate(improvement = NA_real_)
461
+ # Optionally disable the checkbox if comparison isn't possible
462
+ # updateCheckboxInput(session, "compareToBest", value = FALSE, label = "Compare to best single scale (N/A)")
463
+ # shinyjs::disable("compareToBest") # Requires shinyjs package
464
  }
 
 
 
 
465
 
466
  list(
467
+ grouped_data = grouped_data,
468
+ best_single_scale_metric = best_single_scale_metric,
469
+ better_dir = better_dir
470
  )
471
  })
472
 
473
+
474
+ # Reactive expression for interpolation (depends on summaryData)
475
+ interpolatedData <- reactive({
476
+ sumData <- summaryData()
477
+ req(sumData) # Requires valid summary data
478
+
479
+ grouped_data <- sumData$grouped_data
480
+ better_dir <- sumData$better_dir
481
+
482
+ # Determine which z-value to interpolate based on user choice and availability
483
+ use_improvement <- input$compareToBest && "improvement" %in% names(grouped_data) && any(is.finite(grouped_data$improvement))
484
+ z_to_interpolate <- if (use_improvement) {
485
+ grouped_data$improvement
486
+ } else {
487
+ grouped_data$mean_metric
488
+ }
489
+
490
+ # Filter out rows where the chosen z value is not finite
491
+ valid_rows <- is.finite(grouped_data$MaxImageDimsLeft) &
492
+ is.finite(grouped_data$MaxImageDimsRight) &
493
+ is.finite(z_to_interpolate)
494
+
495
+ if (sum(valid_rows) < 3) {
496
+ warning("Less than 3 valid points remaining for interpolation after filtering non-finite z-values.")
497
  return(NULL)
498
  }
499
 
500
+ x <- grouped_data$MaxImageDimsLeft[valid_rows]
501
+ y <- grouped_data$MaxImageDimsRight[valid_rows]
502
+ z <- z_to_interpolate[valid_rows]
503
+
504
+ # Double-check dimension variability again with filtered data
505
+ if (length(unique(x)) < 2 || length(unique(y)) < 2) {
506
+ warning("Insufficient dimension variability after filtering for interpolation.")
507
+ return(NULL)
508
+ }
509
+
510
+ # Perform interpolation
511
+ s_ <- tryCatch({
512
+ akima::interp(
513
+ x = x,
514
+ y = y,
515
+ z = z,
516
+ xo = seq(min(x, na.rm=TRUE), max(x, na.rm=TRUE), length = 50),
517
+ yo = seq(min(y, na.rm=TRUE), max(y, na.rm=TRUE), length = 50),
518
+ duplicate = "mean",
519
+ linear = TRUE # Ensure linear is explicitly set if default changes
520
  )
521
+ }, error = function(e){
522
+ warning("Interpolation failed: ", e$message)
523
+ return(NULL)
524
+ })
525
 
526
+ if (is.null(s_) || !is.matrix(s_$z) || all(!is.finite(s_$z))) {
527
+ warning("Interpolation result is invalid or contains no finite values.")
528
+ return(NULL) # Interpolation failed or yielded no usable results
529
+ }
 
 
530
 
531
+ # Find optimal point from the *interpolated* grid (s_$z)
532
+ optimal_z_value <- NA
533
+ optimal_x <- NA
534
+ optimal_y <- NA
535
+
536
+ if(any(is.finite(s_$z))) { # Proceed only if there are finite values in the grid
537
+ # Determine optimization direction for the *interpolated* z-value
538
+ # If we interpolated 'improvement', we always maximize it.
539
+ # Otherwise, use the original metric's direction.
540
+ interp_better_dir <- if(use_improvement) "max" else better_dir
541
+
542
+ if (interp_better_dir == "max") {
543
+ max_idx <- which.max(s_$z)
544
+ optimal_z_value <- max(s_$z, na.rm = TRUE)
545
  } else {
546
+ max_idx <- which.min(s_$z) # Index of the minimum
547
+ optimal_z_value <- min(s_$z, na.rm = TRUE)
548
+ }
549
+ # Convert linear index to row/column
550
+ row_col <- arrayInd(max_idx, .dim = dim(s_$z))
551
+ optimal_x <- s_$x[row_col[1, 1]]
552
+ optimal_y <- s_$y[row_col[1, 2]]
553
+ } else {
554
+ warning("No finite values in the interpolated grid to find optimum.")
555
+ }
556
 
557
+ list(
558
+ s_ = s_,
559
+ optimal_point = list(x = optimal_x, y = optimal_y, z = optimal_z_value),
560
+ interpolated_metric_name = if(use_improvement) "Improvement" else getMetricLabel(input$metric)
561
+ )
562
+ })
563
+
564
+
565
+ # Heatmap Output
566
+ output$heatmapPlot <- renderPlot({
567
+ sumData <- summaryData()
568
+ interpData <- interpolatedData()
569
 
570
+ # Use req() for cleaner checking of reactive results
571
+ req(sumData, interpData, cancelOutput = TRUE) # Ensure both summary and interpolation are valid
572
+
573
+ grouped_data <- sumData$grouped_data
574
+ optimal_point <- interpData$optimal_point
575
+
576
+ # Determine z values and title based on checkbox and data availability
577
+ use_improvement <- input$compareToBest && "improvement" %in% names(grouped_data) && any(is.finite(grouped_data$improvement))
578
+
579
+ if (use_improvement) {
580
  z <- grouped_data$improvement
581
+ # Check if improvement calculation was possible
582
+ if (all(is.na(z))) {
583
+ plot.new()
584
+ title(main = "Cannot Compute Improvement", sub = "No valid single-scale baseline found.", col.main = "red")
585
+ return()
586
+ }
587
+ main_title <- paste(input$application, "-", getMetricLabel(input$metric), "\nImprovement Over Best Single Scale")
588
+ plot_zlim <- range(interpData$s_$z, na.rm = TRUE) # Use range of interpolated improvement
589
  } else {
590
  z <- grouped_data$mean_metric
591
+ main_title <- paste(input$application, "-", getMetricLabel(input$metric))
592
+ plot_zlim <- range(interpData$s_$z, na.rm = TRUE) # Use range of interpolated metric
593
+ if (input$compareToBest) { # Add note if checkbox is ticked but comparison N/A
594
+ main_title <- paste0(main_title, "\n(Comparison to single scale not available)")
595
+ }
596
  }
597
 
598
  x <- grouped_data$MaxImageDimsLeft
599
  y <- grouped_data$MaxImageDimsRight
 
600
 
601
+ # Filter data for plotting to match data used for interpolation
602
+ valid_rows <- is.finite(x) & is.finite(y) & is.finite(z)
603
+ if(sum(valid_rows) == 0) {
604
+ plot.new()
605
+ text(0.5, 0.5, "No valid data to plot.", cex = 1.5)
606
+ return()
607
+ }
608
+ x_plot <- x[valid_rows]
609
+ y_plot <- y[valid_rows]
610
+ z_plot <- z[valid_rows]
611
+
612
+
613
+ # *** ADJUSTED MARGINS AND COLORS ***
614
+ par(mar=c(5, 5, 4, 2) + 0.1) # Adjusted margins (bottom, left, top, right)
615
+ # *** USING HCL COLORS ***
616
+ customPalette <- hcl.colors(50, palette = "YlOrRd", rev = TRUE) # Or "Viridis", "Plasma" etc.
617
+
618
+ # Call heatMap using the raw (but filtered) data points
619
+ # The interpolation result (interpData$s_) is implicitly used by heatMap via akima::interp
620
+ # We pass the *original* x, y, z used for interpolation to heatMap
621
  heatMap(
622
+ x = x_plot,
623
+ y = y_plot,
624
+ z = z_plot, # Pass the original data used for interpolation
625
+ N = 50, # Interpolation grid size used within heatMap
626
  main = main_title,
627
+ xlab = "Image Dimension 1 (log scale)", # Clarify log scale
628
+ ylab = "Image Dimension 2 (log scale)", # Clarify log scale
629
+ useLog = "xy", # Keep log scale for axes
630
  myCol = customPalette,
631
+ cex.lab = 1.3, # Slightly reduced label size
632
+ cex.main = 1.5, # Slightly reduced main title size
633
+ zlim = plot_zlim, # Use zlim from the *interpolated* data for consistent coloring
634
+ optimal_point = optimal_point, # Pass the calculated optimal point
635
+ add.legend = TRUE,
636
+ legend.width = 1.5 # Slightly wider legend
637
  )
638
+
639
+ }, res = 96) # Adjust resolution if needed
640
 
641
+ # Contextual Note Output (using renderUI for HTML)
642
  output$contextNote <- renderText({
643
  SharedContextText <- c(
644
  "The Peru RCT involves a multifaceted graduation program treatment to reduce poverty outcomes.",
 
686
  )
687
  }
688
  })
689
+
690
  }
691
 
692
  # Run the Shiny App