# setwd('~/Dropbox/ImageSeq/') options(error = NULL) library(shiny) library(dplyr) library(fields) # For image.plot in heatMap library(akima) # For interpolation # Load the data from sm.csv sm <- read.csv("sm.csv") # Define function to convert to numeric f2n <- function(x) as.numeric(as.character(x)) # Compute MaxImageDimsLeft and MaxImageDimsRight from MaxImageDims sm$MaxImageDimsLeft <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[1])) sm$MaxImageDimsRight <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[2])) # Heatmap function with optimal_point parameter heatMap <- function(x, y, z, main = "", N, yaxt = NULL, xlab = "", ylab = "", horizontal = FALSE, useLog = "", legend.width = 1, ylim = NULL, xlim = NULL, zlim = NULL, add.legend = TRUE, legend.only = FALSE, vline = NULL, col_vline = "black", hline = NULL, col_hline = "black", cex.lab = 2, cex.main = 2, myCol = NULL, includeMarginals = FALSE, marginalJitterSD_x = 0.01, marginalJitterSD_y = 0.01, openBrowser = FALSE, optimal_point = NULL) { if (openBrowser) { browser() } s_ <- akima::interp(x = x, y = y, z = z, xo = seq(min(x), max(x), length = N), yo = seq(min(y), max(y), length = N), duplicate = "mean") if (is.null(xlim)) { xlim = range(s_$x, finite = TRUE) } if (is.null(ylim)) { ylim = range(s_$y, finite = TRUE) } imageFxn <- if (add.legend) fields::image.plot else graphics::image if (!grepl(useLog, pattern = "z")) { imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = main, cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim, legend.width = legend.width, horizontal = horizontal, yaxt = yaxt, zlim = zlim, legend.only = legend.only) } else { useLog <- gsub(useLog, pattern = "z", replace = "") zTicks <- summary(c(s_$z)) ep_ <- 0.001 zTicks[zTicks < ep_] <- ep_ zTicks <- exp(seq(log(min(zTicks)), log(max(zTicks)), length.out = 10)) zTicks <- round(zTicks, abs(min(log(zTicks, base = 10)))) s_$z[s_$z < ep_] <- ep_ imageFxn(s_$x, s_$y, log(s_$z), yaxt = yaxt, axis.args = list(at = log(zTicks), labels = zTicks), main = main, cex.main = cex.main, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, xlim = xlim, ylim = ylim, horizontal = horizontal, col = myCol, legend.width = legend.width, zlim = zlim, legend.only = legend.only) } if (!is.null(vline)) { abline(v = vline, lwd = 10, col = col_vline) } if (!is.null(hline)) { abline(h = hline, lwd = 10, col = col_hline) } if (includeMarginals) { points(x + rnorm(length(y), sd = marginalJitterSD_x * sd(x)), rep(ylim[1] * 1.1, length(y)), pch = "|", col = "darkgray") points(rep(xlim[1] * 1.1, length(x)), y + rnorm(length(y), sd = sd(y) * marginalJitterSD_y), pch = "-", col = "darkgray") } # Add green star at optimal point if provided if (!is.null(optimal_point)) { points(optimal_point$x, optimal_point$y, pch = 8, col = "green", cex = 3, lwd = 4) } } ############################################################################## # IMPORTANT: Store the meaningful labels for metric in a named vector. # The "name" is what is displayed to the user in the dropdown, # while the "value" is the underlying column in the dataset. ############################################################################## metric_choices <- c( "Mean AUTOC RATE Ratio" = "AUTOC_rate_std_ratio_mean", "Mean AUTOC RATE" = "AUTOC_rate_mean", "Mean SD of AUTOC RATE" = "AUTOC_rate_std_mean", "Mean AUTOC RATE Ratio with PC" = "AUTOC_rate_std_ratio_mean_pc", "Mean AUTOC RATE with PC" = "AUTOC_rate_mean_pc", "Mean SD of AUTOC RATE with PC" = "AUTOC_rate_std_mean_pc", "Mean Variable Importance (Image 1)" = "MeanVImportHalf1", "Mean Variable Importance (Image 2)" = "MeanVImportHalf2", "Mean Fraction of Top k Features (Image 1)" = "FracTopkHalf1", "Mean RMSE" = "RMSE" ) ############################################################################## # Helper function to retrieve the *label* from its code ############################################################################## getMetricLabel <- function(metric_value) { # This returns, e.g., "Mean AUTOC RATE" if metric_value == "AUTOC_rate_mean". # If it doesn't find a match, return the code itself. lbl <- names(metric_choices)[which(metric_choices == metric_value)] if (length(lbl) == 0) return(metric_value) lbl } # UI Definition ui <- fluidPage( titlePanel("Multiscale Heatmap Explorer"), sidebarLayout( sidebarPanel( selectInput("application", "Application", choices = unique(sm$application), selected = unique(sm$application)[1]), selectInput("model", "Model", choices = unique(sm$optimizeImageRep), selected = "clip-rsicd"), ######################################################################## # Use our named vector 'metric_choices' directly in selectInput ######################################################################## selectInput("metric", "Metric", choices = metric_choices, selected = "AUTOC_rate_std_ratio_mean"), checkboxInput("compareToBest", "Compare to best single scale", value = FALSE) ), mainPanel( plotOutput("heatmapPlot", height = "600px"), div(style = "margin-top: 10px; font-style: italic;", uiOutput("contextNote")) ) ) ) # Server Definition server <- function(input, output) { # Function to determine whether to maximize or minimize the metric get_better_direction <- function(metric) { #if (grepl("std|RMSE", metric)) "min" else "max" if (grepl(metric, pattern = "std_mean|RMSE")) "min" else "max" } # Reactive data processing filteredData <- reactive({ df <- sm %>% filter(application == input$application, optimizeImageRep == input$model) %>% mutate(MaxImageDimsRight = ifelse(is.na(MaxImageDimsRight), MaxImageDimsLeft, MaxImageDimsRight)) if (nrow(df) == 0) return(NULL) df }) # Reactive expression to compute interpolated data and optimal point interpolated_data <- reactive({ data <- filteredData() if (is.null(data)) return(NULL) # Group data grouped_data <- data %>% group_by(MaxImageDimsLeft, MaxImageDimsRight) %>% summarise( mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE), se_metric = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()), n = n(), .groups = "drop" ) better_dir <- get_better_direction(input$metric) single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight) best_single_scale_metric <- if (nrow(single_scale_data) > 0) { if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE) else min(single_scale_data$mean_metric, na.rm = TRUE) } else NA grouped_data <- grouped_data %>% mutate(improvement = if (better_dir == "max") { mean_metric - best_single_scale_metric } else { best_single_scale_metric - mean_metric }) # Select z based on checkbox z_to_interpolate <- if (input$compareToBest) grouped_data$improvement else grouped_data$mean_metric x <- grouped_data$MaxImageDimsLeft y <- grouped_data$MaxImageDimsRight # Check if interpolation is possible if (length(unique(x)) < 2 || length(unique(y)) < 2 || nrow(grouped_data) < 3) { return(NULL) } # Compute interpolated grid s_ <- akima::interp( x = x, y = y, z = z_to_interpolate, xo = seq(min(x), max(x), length = 50), yo = seq(min(y), max(y), length = 50), duplicate = "mean" ) # Find optimal point from interpolated grid max_idx <- if (input$compareToBest || better_dir == "max") { which.max(s_$z) } else { which.min(s_$z) } row_col <- arrayInd(max_idx, .dim = dim(s_$z)) optimal_x <- s_$x[row_col[1,1]] optimal_y <- s_$y[row_col[1,2]] optimal_z <- s_$z[row_col[1,1], row_col[1,2]] list( s_ = s_, optimal_point = list(x = optimal_x, y = optimal_y, z = optimal_z) ) }) # Heatmap Output output$heatmapPlot <- renderPlot({ interp_data <- interpolated_data() if (is.null(interp_data)) { plot.new() text(0.5, 0.5, "Insufficient data for interpolation", cex = 1.5) return(NULL) } data <- filteredData() grouped_data <- data %>% group_by(MaxImageDimsLeft, MaxImageDimsRight) %>% summarise( mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE), .groups = "drop" ) better_dir <- get_better_direction(input$metric) single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight) best_single_scale_metric <- if (nrow(single_scale_data) > 0) { if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE) else min(single_scale_data$mean_metric, na.rm = TRUE) } else NA grouped_data <- grouped_data %>% mutate(improvement = if (better_dir == "max") { mean_metric - best_single_scale_metric } else { best_single_scale_metric - mean_metric }) # Retrieve the *label* for the chosen metric: chosen_metric_label <- getMetricLabel(input$metric) if (input$compareToBest) { z <- grouped_data$improvement main_title <- paste(input$application, "-", chosen_metric_label, "\n Improvement Over Best Single Scale") } else { z <- grouped_data$mean_metric main_title <- paste(input$application, "-", chosen_metric_label) } x <- grouped_data$MaxImageDimsLeft y <- grouped_data$MaxImageDimsRight zlim <- range(z, na.rm = TRUE) par(mar=c(5,5,5,1)) customPalette <- colorRampPalette(c("blue", "white", "red"))(50) heatMap( x = x, y = y, z = z, N = 50, main = main_title, xlab = "Image Dimension 1", ylab = "Image Dimension 2", useLog = "xy", myCol = customPalette, cex.lab = 1.4, zlim = zlim, optimal_point = interp_data$optimal_point ) }) # Contextual Note Output output$contextNote <- renderText({ SharedContextText <- c( "The Peru RCT involves a multifaceted graduation program treatment to reduce poverty outcomes.", "The Uganda RCT involves a cash grant program to stimulate human capital and living conditions among the poor.", "For more information, see https://arxiv.org/abs/2411.02134", "