Spaces:
Sleeping
Sleeping
File size: 12,327 Bytes
774af64 2c61538 774af64 d60cfb3 2c61538 d60cfb3 2c61538 d60cfb3 2c61538 d60cfb3 2c61538 d60cfb3 2c61538 d60cfb3 2c61538 d60cfb3 2c61538 774af64 2c61538 774af64 2c61538 93e81e3 2c61538 774af64 2c61538 774af64 93e81e3 2c61538 774af64 2c61538 d60cfb3 2c61538 774af64 2c61538 774af64 2c61538 774af64 2c61538 774af64 2c61538 774af64 2c61538 d60cfb3 2c61538 d60cfb3 2c61538 d60cfb3 2c61538 d60cfb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# Script: app_ono.R
# setwd("~/Dropbox/OptimizingSI/Analysis/ono")
options(error = NULL)
library(shiny)
library(ggplot2)
library(strategize)
library(dplyr)
# Custom plotting function for optimal strategy distributions
plot_factor <- function(pi_star_list, pi_star_se_list, factor_name, zStar = 1.96) {
probs <- lapply(pi_star_list, function(x) x[[factor_name]])
ses <- lapply(pi_star_se_list, function(x) x[[factor_name]])
levels <- names(probs[[1]])
n_strategies <- length(probs)
# Create data frame for plotting
df <- do.call(rbind, lapply(1:n_strategies, function(i) {
data.frame(
Strategy = if (n_strategies == 1) "Optimal" else c("Democrat", "Republican")[i],
Level = levels,
Probability = probs[[i]],
SE = ses[[i]]
)
}))
# Plot with ggplot2
p <- ggplot(df, aes(x = Level, y = Probability, fill = Strategy)) +
geom_bar(stat = "identity", position = position_dodge(width = 0.9), width = 0.8) +
geom_errorbar(aes(ymin = Probability - zStar * SE, ymax = Probability + zStar * SE),
position = position_dodge(width = 0.9), width = 0.25) +
labs(title = paste("Optimal Distribution for", factor_name),
x = "Level", y = "Probability") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
legend.position = "top") +
scale_fill_manual(values = c("Democrat" = "#89cff0", "Republican" = "red", "Optimal" = "black"))
return(p)
}
# UI Definition
ui <- fluidPage(
titlePanel("Exploring strategize with the candidate choice conjoint data"),
sidebarLayout(
sidebarPanel(
h4("Analysis Options"),
radioButtons("case_type", "Case Type:",
choices = c("Average", "Adversarial"),
selected = "Average"),
conditionalPanel(
condition = "input.case_type == 'Average'",
selectInput("respondent_group", "Respondent Group:",
choices = c("All", "Democrat", "Independent", "Republican"),
selected = "All")
),
# Add a single numeric input for lambda
numericInput("lambda_input", "Lambda (regularization):",
value = 0.01, min = 1e-6, max = 10, step = 0.01),
actionButton("compute", "Compute Results", class = "btn-primary"),
hr(),
h4("Visualization"),
selectInput("factor", "Select Factor to Display:",
choices = NULL),
hr(),
h5("Instructions:"),
p("1. Select a case type and, for Average case, a respondent group."),
p("2. Specify the single lambda to be used by strategize."),
p("3. Click 'Compute Results' to generate optimal strategies."),
p("4. Choose a factor to view its distribution.")
),
mainPanel(
tabsetPanel(
tabPanel("Optimal Strategy Plot",
plotOutput("strategy_plot", height = "600px")),
tabPanel("Q Value",
verbatimTextOutput("q_value"),
p("Q represents the estimated outcome (e.g., selection probability) under the optimal strategy, with 95% confidence interval.")),
tabPanel("About",
h3("About This App"),
p("This Shiny app explores the `strategize` package using Ono experimental data. It computes optimal strategies for Average (optimizing for a respondent group) and Adversarial (optimizing for both parties in competition) cases on the fly."),
p("**Average Case**: Optimizes candidate characteristics for a selected respondent group."),
p("**Adversarial Case**: Finds equilibrium strategies for Democrats and Republicans, identified by 'Pro-life' stance.")
)
)
)
)
)
# Server Definition
server <- function(input, output, session) {
# Load data
load("Processed_OnoData.RData")
Primary2016 <- read.csv("PrimaryCandidates2016 - Sheet1.csv")
# Update factor choices dynamically
observe({
if (input$case_type == "Average") {
factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office")]
} else {
factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office", "Party.affiliation", "Party.competition")]
}
updateSelectInput(session, "factor", choices = factors, selected = factors[1])
})
# Reactive computation triggered by button
result <- eventReactive(input$compute, {
withProgress(message = "Computing optimal strategies...", value = 0, {
# Increment progress
incProgress(0.2, detail = "Preparing data...")
# Common hyperparameters (mirroring QRun_Apps.R)
params <- list(
nSGD = 1000L,
batch_size = 50L,
penalty_type = "KL",
nFolds = 3L,
use_optax = TRUE,
compute_se = FALSE, # Set to FALSE for quicker results
conf_level = 0.95,
conda_env = "strategize",
conda_env_required = TRUE
)
# Grab the single user-chosen lambda
my_lambda <- input$lambda_input
if (input$case_type == "Average") {
# Subset data for Average case
if (input$respondent_group == "All") {
indices <- which( my_data$Office == "President" )
} else {
indices <- which(my_data_FULL$R_Partisanship == input$respondent_group &
my_data$Office == "President")
}
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
!colnames(FACTOR_MAT_FULL) %in% c("Office","Party.affiliation","Party.competition")]
Yobs <- Yobs_FULL[indices]
X <- X_FULL[indices, ]
log_pr_w <- log_pr_w_FULL[indices]
pair_id <- pair_id_FULL[indices]
assignmentProbList <- assignmentProbList_FULL[!names(assignmentProbList_FULL) %in% "Office"]
incProgress(0.4, detail = "Running strategize...")
# Compute with strategize using a single lambda
Qoptimized <- strategize(
Y = Yobs,
W = FACTOR_MAT,
X = X,
pair_id = pair_id,
p_list = assignmentProbList[colnames(FACTOR_MAT)],
lambda = my_lambda,
diff = TRUE,
adversarial = FALSE,
K = 1L, # Base analysis
nSGD = params$nSGD,
penalty_type = params$penalty_type,
folds = params$nFolds,
use_optax = params$use_optax,
compute_se = params$compute_se,
conf_level = params$conf_level,
conda_env = params$conda_env,
conda_env_required = params$conda_env_required
)
} else { # Adversarial case
# Use full data, drop specific factors
DROP_FACTORS <- c("Office", "Party.affiliation", "Party.competition")
FACTOR_MAT <- FACTOR_MAT_FULL[, !colnames(FACTOR_MAT_FULL) %in% DROP_FACTORS]
Yobs <- Yobs_FULL
X <- X_FULL
log_pr_w <- log_pr_w_FULL
assignmentProbList <- assignmentProbList_FULL[!names(assignmentProbList_FULL) %in% DROP_FACTORS]
# Prepare slate_list (simplified from QRun_Apps.R)
incProgress(0.3, detail = "Preparing slate data...")
FactorOptions <- apply(FACTOR_MAT, 2, table)
prior_alpha <- 10
Primary_D <- Primary2016[Primary2016$Party == "Democratic", colnames(FACTOR_MAT)]
Primary_R <- Primary2016[Primary2016$Party == "Republican", colnames(FACTOR_MAT)]
Primary_D_slate <- lapply(colnames(Primary_D), function(col) {
posterior_alpha <- FactorOptions[[col]]; posterior_alpha[] <- prior_alpha
Empirical_ <- table(Primary_D[[col]])
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"]
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_
prop.table(posterior_alpha)
})
names(Primary_D_slate) <- colnames(Primary_D)
Primary_R_slate <- lapply(colnames(Primary_R), function(col) {
posterior_alpha <- FactorOptions[[col]]; posterior_alpha[] <- prior_alpha
Empirical_ <- table(Primary_R[[col]])
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"]
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_
prop.table(posterior_alpha)
})
names(Primary_R_slate) <- colnames(Primary_R)
slate_list <- list("Democratic" = Primary_D_slate, "Republican" = Primary_R_slate)
# subset data
indices <- which( my_data$R_Partisanship %in% c("Republican","Democrat") &
my_data$Office == "President" )
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
!colnames(FACTOR_MAT_FULL) %in% c("Office",
"Party.competition",
"Party.affiliation")]
Yobs <- Yobs_FULL[indices]
my_data_red <- my_data_FULL[indices,]
pair_id <- pair_id_FULL[indices]
cluster_var <- cluster_var_FULL[ indices ]
my_data_red$Party.affiliation_clean <- ifelse(my_data_red$Party.affiliation == "Republican Party",
yes = "Republican", no = ifelse(my_data_red$Party.affiliation == "Democratic Party",
yes = "Democrat",no = "Independent"))
# subset cols
assignmentProbList <- assignmentProbList_FULL[colnames(FACTOR_MAT)]
slate_list$Democratic <- slate_list$Democratic[names(assignmentProbList)]
slate_list$Republican <- slate_list$Republican[names(assignmentProbList)]
incProgress(0.4, detail = "Running strategize...")
# Compute with strategize using a single lambda
Qoptimized <- strategize(
Y = Yobs,
W = FACTOR_MAT,
#X = X,
X = NULL,
p_list = assignmentProbList,
slate_list = slate_list,
varcov_cluster_variable = cluster_var,
competing_group_variable_respondent = my_data_red$R_Partisanship,
competing_group_variable_candidate = my_data_red$Party.affiliation_clean,
competing_group_competition_variable_candidate = my_data_red$Party.competition,
pair_id = pair_id,
respondent_id = my_data_red$respondentIndex,
respondent_task_id = my_data_red$task,
profile_order = my_data_red$profile,
lambda = my_lambda,
diff = TRUE,
force_gaussian = FALSE,
adversarial = TRUE,
nFolds_glm = 3L,
K = 1L,
nMonte_adversarial = 100L,
nSGD = params$nSGD,
penalty_type = params$penalty_type,
use_optax = params$use_optax,
compute_se = params$compute_se,
conf_level = params$conf_level,
conda_env = params$conda_env,
conda_env_required = params$conda_env_required
)
# Identify Democrat vs Republican based on "Pro-life" stance
prolife_probs <- c(Qoptimized$pi_star_point$k1$Position.on.abortion["Pro-life"],
Qoptimized$pi_star_point$k2$Position.on.abortion["Pro-life"])
which_repub <- which.max(prolife_probs)
if (which_repub == 1) {
# Swap
Qoptimized$pi_star_point <- list(k1 = Qoptimized$pi_star_point$k2, k2 = Qoptimized$pi_star_point$k1)
Qoptimized$pi_star_se <- list(k1 = Qoptimized$pi_star_se$k2, k2 = Qoptimized$pi_star_se$k1)
}
}
incProgress(0.8, detail = "Finalizing results...")
return(Qoptimized)
})
})
# Render strategy plot
output$strategy_plot <- renderPlot({
req(result())
factor_name <- input$factor
pi_star_list <- result()$pi_star_point
pi_star_se_list <- result()$pi_star_se
plot_factor(pi_star_list, pi_star_se_list, factor_name)
})
# Render Q value
output$q_value <- renderText({
req(result())
q_point <- result()$Q_point_mEst
q_se <- result()$Q_se_mEst
paste("Estimated Q Value: ", sprintf("%.3f ± %.3f", q_point, 1.96 * q_se))
})
}
# Run the app
shinyApp(ui, server)
|