Spaces:
Running
Running
# setwd("~/Dropbox/OptimizingSI/Analysis/ono") | |
# install.packages( "~/Documents/strategize-software/strategize", repos = NULL, type = "source",force = F) | |
# Script: app_ono.R | |
options(error = NULL) | |
library(shiny) | |
library(ggplot2) | |
library(strategize) | |
library(dplyr) | |
# Custom plotting function for optimal strategy distributions | |
plot_factor <- function(pi_star_list, | |
pi_star_se_list, | |
factor_name, | |
zStar = 1.96, | |
n_strategies = 1L) { | |
probs <- lapply(pi_star_list, function(x) x[[factor_name]]) | |
ses <- lapply(pi_star_se_list, function(x) x[[factor_name]]) | |
levels <- names(probs[[1]]) | |
# Create data frame for plotting | |
df <- do.call(rbind, lapply(1:n_strategies, function(i) { | |
data.frame( | |
Strategy = if (n_strategies == 1) "Optimal" else c("Democrat", "Republican")[i], | |
Level = levels, | |
Probability = probs[[i]] | |
#SE = ses[[i]] | |
) | |
})) | |
# Manual dodging: Create numeric x-positions with offsets | |
df$Level_num <- as.numeric(as.factor(df$Level)) # Convert Level to numeric (1, 2, ...) | |
if (n_strategies == 1) { | |
df$x_dodged <- df$Level_num # No dodging for single strategy | |
} else { | |
# Apply ±offset for Democrat/Republican | |
df$x_dodged <- df$Level_num + | |
ifelse(df$Strategy == "Democrat", | |
-0.05, 0.05) | |
} | |
# Plot with ggplot2 | |
p <- ggplot(df, aes(x = x_dodged, | |
y = Probability, | |
color = Strategy)) + | |
# Segment from y=0 to y=Probability | |
geom_segment( | |
aes(x = x_dodged, xend = x_dodged, | |
y = 0, yend = Probability), | |
size = 0.3 | |
) + | |
# Point at the probability | |
geom_point( | |
size = 2.5 | |
) + | |
# Text label above the point | |
geom_text( | |
aes(x = x_dodged, | |
label = sprintf("%.2f", Probability)), | |
vjust = -0.7, | |
size = 3 | |
) + | |
# Set x-axis with original Level labels | |
scale_x_continuous( | |
breaks = unique(df$Level_num), | |
labels = unique(df$Level), | |
limits = c(min(df$x_dodged)-0.20, | |
max(df$x_dodged)+0.20) | |
) + | |
# Labels | |
labs( | |
title = "Optimal Distribution for:", | |
subtitle = sprintf("*%s*", gsub(factor_name, | |
pattern = "\\.", | |
replace = " ")), | |
x = "Level", | |
y = "Probability" | |
) + | |
# Apply Tufte's minimalistic theme | |
theme_minimal(base_size = 18, | |
base_line_size = 0) + | |
theme( | |
legend.position = "none", | |
legend.title = element_blank(), | |
panel.grid.major = element_blank(), | |
panel.grid.minor = element_blank(), | |
axis.line = element_line(color = "black", size = 0.5), | |
axis.text.x = element_text(angle = 45, | |
hjust = 1, | |
margin = margin(r = 10)) # Add right margin | |
) + | |
# Manual color scale for different strategies | |
scale_color_manual(values = c("Democrat" = "#89cff0", | |
"Republican" = "red", | |
"Optimal" = "black")) | |
return(p) | |
} | |
# UI Definition | |
ui <- fluidPage( | |
titlePanel("Exploring strategize with the candidate choice conjoint data"), | |
tags$p( | |
style = "text-align: left; margin-top: -10px;", | |
tags$a( | |
href = "https://strategizelab.org/", | |
target = "_blank", | |
title = "strategizelab.org", | |
style = "color: #337ab7; text-decoration: none;", | |
"strategizelab.org ", | |
icon("external-link", style = "font-size: 12px;") | |
) | |
), | |
# ---- Minimal "Share" button HTML + JS inlined ---- | |
tags$div( | |
style = "text-align: left; margin: 0.5em 0 0.5em 0em;", | |
HTML(' | |
<button id="share-button" | |
style=" | |
display: inline-flex; | |
align-items: center; | |
justify-content: center; | |
gap: 8px; | |
padding: 5px 10px; | |
font-size: 16px; | |
font-weight: normal; | |
color: #000; | |
background-color: #fff; | |
border: 1px solid #ddd; | |
border-radius: 6px; | |
cursor: pointer; | |
box-shadow: 0 1.5px 0 #000; | |
"> | |
<svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" | |
stroke-width="2" stroke-linecap="round" stroke-linejoin="round"> | |
<circle cx="18" cy="5" r="3"></circle> | |
<circle cx="6" cy="12" r="3"></circle> | |
<circle cx="18" cy="19" r="3"></circle> | |
<line x1="8.59" y1="13.51" x2="15.42" y2="17.49"></line> | |
<line x1="15.41" y1="6.51" x2="8.59" y2="10.49"></line> | |
</svg> | |
<strong>Share</strong> | |
</button> | |
'), | |
tags$script( | |
HTML(" | |
(function() { | |
const shareBtn = document.getElementById('share-button'); | |
// Reusable helper function to show a small “Copied!” message | |
function showCopyNotification() { | |
const notification = document.createElement('div'); | |
notification.innerText = 'Copied to clipboard'; | |
notification.style.position = 'fixed'; | |
notification.style.bottom = '20px'; | |
notification.style.right = '20px'; | |
notification.style.backgroundColor = 'rgba(0, 0, 0, 0.8)'; | |
notification.style.color = '#fff'; | |
notification.style.padding = '8px 12px'; | |
notification.style.borderRadius = '4px'; | |
notification.style.zIndex = '9999'; | |
document.body.appendChild(notification); | |
setTimeout(() => { notification.remove(); }, 2000); | |
} | |
shareBtn.addEventListener('click', function() { | |
const currentURL = window.location.href; | |
const pageTitle = document.title || 'Check this out!'; | |
// If browser supports Web Share API | |
if (navigator.share) { | |
navigator.share({ | |
title: pageTitle, | |
text: '', | |
url: currentURL | |
}) | |
.catch((error) => { | |
console.log('Sharing failed', error); | |
}); | |
} else { | |
// Fallback: Copy URL | |
if (navigator.clipboard && navigator.clipboard.writeText) { | |
navigator.clipboard.writeText(currentURL).then(() => { | |
showCopyNotification(); | |
}, (err) => { | |
console.error('Could not copy text: ', err); | |
}); | |
} else { | |
// Double fallback for older browsers | |
const textArea = document.createElement('textarea'); | |
textArea.value = currentURL; | |
document.body.appendChild(textArea); | |
textArea.select(); | |
try { | |
document.execCommand('copy'); | |
showCopyNotification(); | |
} catch (err) { | |
alert('Please copy this link:\\n' + currentURL); | |
} | |
document.body.removeChild(textArea); | |
} | |
} | |
}); | |
})(); | |
") | |
) | |
), | |
# ---- End: Minimal Share button snippet ---- | |
sidebarLayout( | |
sidebarPanel( | |
h4("Analysis Options"), | |
radioButtons("case_type", "Case Type:", | |
choices = c("Average", "Adversarial"), | |
selected = "Average"), | |
conditionalPanel( | |
condition = "input.case_type == 'Average'", | |
selectInput("respondent_group", "Respondent Group:", | |
choices = c("All", "Democrat", "Independent", "Republican"), | |
selected = "All") | |
), | |
numericInput("lambda_input", "Lambda (regularization):", | |
value = 0.01, min = 1e-6, max = 10, step = 0.01), | |
actionButton("compute", "Compute Results", class = "btn-primary"), | |
hr(), | |
h4("Visualization"), | |
selectInput("factor", "Select Factor to Display:", | |
choices = NULL), | |
br(), | |
selectInput("previousResults", "View Previous Results:", | |
choices = NULL), | |
hr(), | |
h5("Instructions:"), | |
p("1. Select a case type and, for Average case, a respondent group."), | |
p("2. Specify the single lambda to be used by strategize."), | |
p("3. Click 'Compute Results' to generate optimal strategies."), | |
p("4. Choose a factor to view its distribution."), | |
p("5. Use 'View Previous Results' to toggle among past computations.") | |
), | |
mainPanel( | |
tabsetPanel( | |
tabPanel("Optimal Strategy Plot", | |
plotOutput("strategy_plot", height = "600px")), | |
tabPanel("Q Value", | |
verbatimTextOutput("q_value"), | |
p("Q represents the estimated outcome | |
under the optimal strategy, with 95% confidence interval.")), | |
tabPanel("About", | |
h3("About this page"), | |
p("This page app explores the ", | |
a("strategize R package", href = "https://github.com/cjerzak/strategize-software/", target = "_blank"), | |
" using Ono forced conjoint experimental data. | |
It computes optimal strategies for Average (optimizing for a respondent group) | |
and Adversarial (optimizing for both parties in competition) cases on the fly."), | |
p(strong("Average Case:"), | |
"Optimizes candidate characteristics for a selected respondent group."), | |
p(strong("Adversarial Case:"), | |
"Finds equilibrium strategies for Democrats and Republicans."), | |
p(strong("More information:"), | |
a("strategizelab.org", href = "https://strategizelab.org", target = "_blank")) | |
) | |
), | |
br(), | |
wellPanel( | |
h4("Currently Selected Computation:"), | |
verbatimTextOutput("selection_summary") | |
) | |
) | |
) | |
) | |
# Server Definition | |
server <- function(input, output, session) { | |
# Load data | |
load("Processed_OnoData.RData") | |
Primary2016 <- read.csv("PrimaryCandidates2016 - Sheet1.csv") | |
# Prepare a storage structure for caching multiple results | |
cachedResults <- reactiveValues(data = list()) | |
# Dynamic update of factor choices | |
observe({ | |
if (input$case_type == "Average") { | |
factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office")] | |
} else { | |
factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office", "Party.affiliation", "Party.competition")] | |
} | |
updateSelectInput(session, "factor", choices = factors, selected = factors[1]) | |
}) | |
# Observe "Compute Results" button to generate a new result and cache it | |
observeEvent(input$compute, { | |
withProgress(message = "Computing optimal strategies...", value = 0, { | |
incProgress(0.2, detail = "Preparing data...") | |
# Common hyperparameters | |
params <- list( | |
nSGD = 1000L, | |
batch_size = 50L, | |
penalty_type = "KL", | |
nFolds = 3L, | |
use_optax = TRUE, | |
compute_se = FALSE, # Set to FALSE for quicker results | |
conf_level = 0.95, | |
conda_env = "strategize", | |
conda_env_required = TRUE | |
) | |
# Grab the single user-chosen lambda | |
my_lambda <- input$lambda_input | |
# We'll define a label to track the result uniquely | |
# Include the case type, group (if Average), and lambda in the label | |
if (input$case_type == "Average") { | |
label <- paste("Case=Average, Group=", input$respondent_group, ", Lambda=", my_lambda, sep="") | |
} else { | |
label <- paste("Case=Adversarial, Lambda=", my_lambda, sep="") | |
} | |
strategize_start <- Sys.time() # Timing strategize start | |
if (input$case_type == "Average") { | |
# Subset data for Average case | |
if (input$respondent_group == "All") { | |
indices <- which(my_data$Office == "President") | |
} else { | |
indices <- which( | |
my_data_FULL$R_Partisanship == input$respondent_group & | |
my_data$Office == "President" | |
) | |
} | |
FACTOR_MAT <- FACTOR_MAT_FULL[indices, | |
!colnames(FACTOR_MAT_FULL) %in% | |
c("Office","Party.affiliation","Party.competition")] | |
Yobs <- Yobs_FULL[indices] | |
X <- X_FULL[indices, ] | |
log_pr_w <- log_pr_w_FULL[indices] | |
pair_id <- pair_id_FULL[indices] | |
assignmentProbList <- assignmentProbList_FULL[names(FACTOR_MAT)] | |
incProgress(0.4, | |
detail = "Running strategize...") | |
# Compute with strategize | |
Qoptimized <- strategize( | |
Y = Yobs, | |
W = FACTOR_MAT, | |
X = X, | |
pair_id = pair_id, | |
p_list = assignmentProbList[colnames(FACTOR_MAT)], | |
lambda = my_lambda, | |
diff = TRUE, | |
adversarial = FALSE, | |
use_regularization = TRUE, | |
K = 1L, | |
nSGD = params$nSGD, | |
penalty_type = params$penalty_type, | |
folds = params$nFolds, | |
use_optax = params$use_optax, | |
compute_se = params$compute_se, | |
conf_level = params$conf_level, | |
conda_env = params$conda_env, | |
conda_env_required = params$conda_env_required | |
) | |
Qoptimized$n_strategies <- 1L | |
} | |
if (input$case_type == "Adversarial"){ | |
# Adversarial case | |
DROP_FACTORS <- c("Office", "Party.affiliation", "Party.competition") | |
FACTOR_MAT <- FACTOR_MAT_FULL[, !colnames(FACTOR_MAT_FULL) %in% DROP_FACTORS] | |
Yobs <- Yobs_FULL | |
X <- X_FULL | |
log_pr_w <- log_pr_w_FULL | |
assignmentProbList <- assignmentProbList_FULL[!names(assignmentProbList_FULL) %in% DROP_FACTORS] | |
incProgress(0.3, detail = "Preparing slate data...") | |
FactorOptions <- apply(FACTOR_MAT, 2, table) | |
prior_alpha <- 10 | |
Primary_D <- Primary2016[Primary2016$Party == "Democratic", colnames(FACTOR_MAT)] | |
Primary_R <- Primary2016[Primary2016$Party == "Republican", colnames(FACTOR_MAT)] | |
Primary_D_slate <- lapply(colnames(Primary_D), function(col) { | |
posterior_alpha <- FactorOptions[[col]]; posterior_alpha[] <- prior_alpha | |
Empirical_ <- table(Primary_D[[col]]) | |
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"] | |
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_ | |
prop.table(posterior_alpha) | |
}) | |
names(Primary_D_slate) <- colnames(Primary_D) | |
Primary_R_slate <- lapply(colnames(Primary_R), function(col) { | |
posterior_alpha <- FactorOptions[[col]]; posterior_alpha[] <- prior_alpha | |
Empirical_ <- table(Primary_R[[col]]) | |
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"] | |
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_ | |
prop.table(posterior_alpha) | |
}) | |
names(Primary_R_slate) <- colnames(Primary_R) | |
slate_list <- list("Democratic" = Primary_D_slate, "Republican" = Primary_R_slate) | |
indices <- which( | |
my_data$R_Partisanship %in% c("Republican","Democrat") & | |
my_data$Office == "President" | |
) | |
FACTOR_MAT <- FACTOR_MAT_FULL[indices, | |
!colnames(FACTOR_MAT_FULL) %in% c("Office","Party.competition","Party.affiliation")] | |
Yobs <- Yobs_FULL[indices] | |
my_data_red <- my_data_FULL[indices,] | |
pair_id <- pair_id_FULL[indices] | |
cluster_var <- cluster_var_FULL[indices] | |
my_data_red$Party.affiliation_clean <- ifelse( | |
my_data_red$Party.affiliation == "Republican Party", | |
yes = "Republican", | |
no = ifelse(my_data_red$Party.affiliation == "Democratic Party","Democrat","Independent") | |
) | |
assignmentProbList <- assignmentProbList_FULL[colnames(FACTOR_MAT)] | |
slate_list$Democratic <- slate_list$Democratic[names(assignmentProbList)] | |
slate_list$Republican <- slate_list$Republican[names(assignmentProbList)] | |
incProgress(0.4, detail = "Running strategize...") | |
Qoptimized <- strategize( | |
Y = Yobs, | |
W = FACTOR_MAT, | |
X = NULL, | |
p_list = assignmentProbList, | |
slate_list = slate_list, | |
varcov_cluster_variable = cluster_var, | |
competing_group_variable_respondent = my_data_red$R_Partisanship, | |
competing_group_variable_candidate = my_data_red$Party.affiliation_clean, | |
competing_group_competition_variable_candidate = my_data_red$Party.competition, | |
pair_id = pair_id, | |
respondent_id = my_data_red$respondentIndex, | |
respondent_task_id = my_data_red$task, | |
profile_order = my_data_red$profile, | |
lambda = my_lambda, | |
diff = TRUE, | |
use_regularization = TRUE, | |
force_gaussian = FALSE, | |
adversarial = TRUE, | |
K = 1L, | |
nMonte_adversarial = 20L, | |
nSGD = params$nSGD, | |
penalty_type = params$penalty_type, | |
learning_rate_max = 0.001, | |
use_optax = params$use_optax, | |
compute_se = params$compute_se, | |
conf_level = params$conf_level, | |
conda_env = params$conda_env, | |
conda_env_required = params$conda_env_required | |
) | |
# check correlation between strategies to diagnose optimization issues | |
# plot(unlist(Qoptimized$pi_star_point$Democrat), unlist(Qoptimized$pi_star_point$Republican)) | |
Qoptimized$n_strategies <- 2L | |
} | |
Qoptimized$runtime_seconds <- as.numeric(difftime(Sys.time(), | |
strategize_start, | |
units = "secs")) | |
Qoptimized <- Qoptimized[c("pi_star_point", | |
"pi_star_se", | |
"Q_point", | |
"Q_se", | |
"n_strategies", | |
"runtime_seconds")] | |
incProgress(0.8, detail = "Finalizing results...") | |
# Store in the reactiveValues cache | |
cachedResults$data[[label]] <- Qoptimized | |
# Update the choice list for previous results | |
updateSelectInput(session, "previousResults", | |
choices = names(cachedResults$data), | |
selected = label) | |
}) | |
}) | |
# Reactive to pick the result the user wants to display | |
selectedResult <- reactive({ | |
validate( | |
need(input$previousResults != "", "No result computed or selected yet.") | |
) | |
cachedResults$data[[input$previousResults]] | |
}) | |
# Render strategy plot | |
output$strategy_plot <- renderPlot({ | |
req(selectedResult()) | |
factor_name <- input$factor | |
pi_star_list <- selectedResult()$pi_star_point | |
pi_star_se_list <- selectedResult()$pi_star_se | |
n_strategies <- selectedResult()$n_strategies | |
plot_factor(pi_star_list = pi_star_list, | |
pi_star_se_list = pi_star_se_list, | |
factor_name = factor_name, | |
n_strategies = n_strategies) | |
}) | |
# Render Q value | |
output$q_value <- renderText({ | |
req(selectedResult()) | |
q_point <- selectedResult()$Q_point | |
q_se <- selectedResult()$Q_se | |
show_se <- length(q_se) > 0 | |
if(show_se){ show_se <- q_se > 0 } | |
if(!show_se){ render_text <- paste("Estimated Q Value:", sprintf("%.3f", q_point)) } | |
if(show_se){ render_text <- paste("Estimated Q Value:", sprintf("%.3f ± %.3f", q_point, 1.96 * q_se)) } | |
sprintf("%s (Runtime: %.3f s)", | |
render_text, | |
selectedResult()$runtime_seconds) | |
}) | |
# Show which set of parameters (label) is currently selected | |
output$selection_summary <- renderText({ | |
input$previousResults | |
}) | |
} | |
# Run the app | |
shinyApp(ui, server) | |