Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM | |
import torch | |
import torch.nn.functional as F | |
# ๊ฐ์ ๋ถ์์ฉ ๋ชจ๋ธ | |
emotion_model = AutoModelForSequenceClassification.from_pretrained("beomi/KcELECTRA-base", num_labels=3) | |
emotion_tokenizer = AutoTokenizer.from_pretrained("beomi/KcELECTRA-base") | |
emotion_labels = ['๋ถ์ ', '์ค๋ฆฝ', '๊ธ์ '] | |
# ํ ์คํธ ์์ฑ์ฉ GPT ๋ชจ๋ธ | |
gpt_model = AutoModelForCausalLM.from_pretrained("skt/kogpt2-base-v2") | |
gpt_tokenizer = AutoTokenizer.from_pretrained("skt/kogpt2-base-v2") | |
# ๊ฐ์ ๋ถ์ ํจ์ | |
def predict_emotion(text): | |
inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
with torch.no_grad(): | |
outputs = emotion_model(**inputs) | |
probs = F.softmax(outputs.logits, dim=1) | |
pred = torch.argmax(probs, dim=1).item() | |
return emotion_labels[pred] | |
# GPT ์ด์ด์ฐ๊ธฐ ํจ์ | |
def emotional_gpt(user_input): | |
emotion = predict_emotion(user_input) | |
if emotion == "๊ธ์ ": | |
prompt = "๊ธฐ๋ถ ์ข์ ํ๋ฃจ์๋ค. " | |
elif emotion == "๋ถ์ ": | |
prompt = "์ฐ์ธํ ๊ธฐ๋ถ์ผ๋ก ์์๋ ํ๋ฃจ, " | |
else: | |
prompt = "ํ๋ฒํ ํ๋ฃจ๊ฐ ์์๋์๋ค. " | |
prompt += user_input | |
input_ids = gpt_tokenizer.encode(prompt, return_tensors="pt") | |
output = gpt_model.generate(input_ids, max_length=150, do_sample=True, temperature=0.8, top_k=50) | |
result = gpt_tokenizer.decode(output[0], skip_special_tokens=True) | |
return f"๐ง ๊ฐ์ ๋ถ์ ๊ฒฐ๊ณผ: {emotion}\n\nโ๏ธ GPT๊ฐ ์ด์ด ์ด ๊ธ:\n{result}" | |
# Gradio ์ธํฐํ์ด์ค ๊ตฌ์ฑ | |
gr.Interface( | |
fn=emotional_gpt, | |
inputs=gr.Textbox(lines=3, label="โ๏ธ ๊ฐ์ ์ ๋ด์ ๋ฌธ์ฅ์ ์ ๋ ฅํด์ฃผ์ธ์!", placeholder="์: ์ค๋ ๋๋ฌด ์ธ๋ก์ ์ด"), | |
outputs="text", | |
title="๐ญ ๊ฐ์ ํ GPT ํ๊ธ ์๋ฌธ AI", | |
description="๐ง ๊ฐ์ ์ ๋จผ์ ํ์ ํ๊ณ โจ ๊ทธ ๊ฐ์ ์ ์ด์ธ๋ฆฌ๋ ๋ฌธ์ฅ์ ์ด์ด์ ์์ฑํด์ค๋๋ค!", | |
theme="soft", | |
examples=[ | |
["๊ธฐ๋ถ์ด ๋๋ฌด ์ข์์ด"], | |
["์ง์ง ์ธ๋กญ๊ณ ํ๋ ํ๋ฃจ์์ด"], | |
["ํ์๊ฐ ๊ทธ๋ฅ ๊ทธ๋ฌ์ด"] | |
] | |
).launch() | |