D-FINE / src /core /_config.py
developer0hye's picture
Upload 76 files
e85fecb verified
raw
history blame
9.38 kB
"""
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)
Copyright(c) 2023 lyuwenyu. All Rights Reserved.
"""
from pathlib import Path
from typing import Callable, Dict, List
import torch
import torch.nn as nn
from torch.cuda.amp.grad_scaler import GradScaler
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LRScheduler
from torch.utils.data import DataLoader, Dataset
from torch.utils.tensorboard import SummaryWriter
__all__ = [
"BaseConfig",
]
class BaseConfig(object):
# TODO property
def __init__(self) -> None:
super().__init__()
self.task: str = None
# instance / function
self._model: nn.Module = None
self._postprocessor: nn.Module = None
self._criterion: nn.Module = None
self._optimizer: Optimizer = None
self._lr_scheduler: LRScheduler = None
self._lr_warmup_scheduler: LRScheduler = None
self._train_dataloader: DataLoader = None
self._val_dataloader: DataLoader = None
self._ema: nn.Module = None
self._scaler: GradScaler = None
self._train_dataset: Dataset = None
self._val_dataset: Dataset = None
self._collate_fn: Callable = None
self._evaluator: Callable[[nn.Module, DataLoader, str],] = None
self._writer: SummaryWriter = None
# dataset
self.num_workers: int = 0
self.batch_size: int = None
self._train_batch_size: int = None
self._val_batch_size: int = None
self._train_shuffle: bool = None
self._val_shuffle: bool = None
# runtime
self.resume: str = None
self.tuning: str = None
self.epochs: int = None
self.last_epoch: int = -1
self.use_amp: bool = False
self.use_ema: bool = False
self.ema_decay: float = 0.9999
self.ema_warmups: int = 2000
self.sync_bn: bool = False
self.clip_max_norm: float = 0.0
self.find_unused_parameters: bool = None
self.seed: int = None
self.print_freq: int = None
self.checkpoint_freq: int = 1
self.output_dir: str = None
self.summary_dir: str = None
self.device: str = ""
@property
def model(self) -> nn.Module:
return self._model
@model.setter
def model(self, m):
assert isinstance(m, nn.Module), f"{type(m)} != nn.Module, please check your model class"
self._model = m
@property
def postprocessor(self) -> nn.Module:
return self._postprocessor
@postprocessor.setter
def postprocessor(self, m):
assert isinstance(m, nn.Module), f"{type(m)} != nn.Module, please check your model class"
self._postprocessor = m
@property
def criterion(self) -> nn.Module:
return self._criterion
@criterion.setter
def criterion(self, m):
assert isinstance(m, nn.Module), f"{type(m)} != nn.Module, please check your model class"
self._criterion = m
@property
def optimizer(self) -> Optimizer:
return self._optimizer
@optimizer.setter
def optimizer(self, m):
assert isinstance(
m, Optimizer
), f"{type(m)} != optim.Optimizer, please check your model class"
self._optimizer = m
@property
def lr_scheduler(self) -> LRScheduler:
return self._lr_scheduler
@lr_scheduler.setter
def lr_scheduler(self, m):
assert isinstance(
m, LRScheduler
), f"{type(m)} != LRScheduler, please check your model class"
self._lr_scheduler = m
@property
def lr_warmup_scheduler(self) -> LRScheduler:
return self._lr_warmup_scheduler
@lr_warmup_scheduler.setter
def lr_warmup_scheduler(self, m):
self._lr_warmup_scheduler = m
@property
def train_dataloader(self) -> DataLoader:
if self._train_dataloader is None and self.train_dataset is not None:
loader = DataLoader(
self.train_dataset,
batch_size=self.train_batch_size,
num_workers=self.num_workers,
collate_fn=self.collate_fn,
shuffle=self.train_shuffle,
)
loader.shuffle = self.train_shuffle
self._train_dataloader = loader
return self._train_dataloader
@train_dataloader.setter
def train_dataloader(self, loader):
self._train_dataloader = loader
@property
def val_dataloader(self) -> DataLoader:
if self._val_dataloader is None and self.val_dataset is not None:
loader = DataLoader(
self.val_dataset,
batch_size=self.val_batch_size,
num_workers=self.num_workers,
drop_last=False,
collate_fn=self.collate_fn,
shuffle=self.val_shuffle,
persistent_workers=True,
)
loader.shuffle = self.val_shuffle
self._val_dataloader = loader
return self._val_dataloader
@val_dataloader.setter
def val_dataloader(self, loader):
self._val_dataloader = loader
@property
def ema(self) -> nn.Module:
if self._ema is None and self.use_ema and self.model is not None:
from ..optim import ModelEMA
self._ema = ModelEMA(self.model, self.ema_decay, self.ema_warmups)
return self._ema
@ema.setter
def ema(self, obj):
self._ema = obj
@property
def scaler(self) -> GradScaler:
if self._scaler is None and self.use_amp and torch.cuda.is_available():
self._scaler = GradScaler()
return self._scaler
@scaler.setter
def scaler(self, obj: GradScaler):
self._scaler = obj
@property
def val_shuffle(self) -> bool:
if self._val_shuffle is None:
print("warning: set default val_shuffle=False")
return False
return self._val_shuffle
@val_shuffle.setter
def val_shuffle(self, shuffle):
assert isinstance(shuffle, bool), "shuffle must be bool"
self._val_shuffle = shuffle
@property
def train_shuffle(self) -> bool:
if self._train_shuffle is None:
print("warning: set default train_shuffle=True")
return True
return self._train_shuffle
@train_shuffle.setter
def train_shuffle(self, shuffle):
assert isinstance(shuffle, bool), "shuffle must be bool"
self._train_shuffle = shuffle
@property
def train_batch_size(self) -> int:
if self._train_batch_size is None and isinstance(self.batch_size, int):
print(f"warning: set train_batch_size=batch_size={self.batch_size}")
return self.batch_size
return self._train_batch_size
@train_batch_size.setter
def train_batch_size(self, batch_size):
assert isinstance(batch_size, int), "batch_size must be int"
self._train_batch_size = batch_size
@property
def val_batch_size(self) -> int:
if self._val_batch_size is None:
print(f"warning: set val_batch_size=batch_size={self.batch_size}")
return self.batch_size
return self._val_batch_size
@val_batch_size.setter
def val_batch_size(self, batch_size):
assert isinstance(batch_size, int), "batch_size must be int"
self._val_batch_size = batch_size
@property
def train_dataset(self) -> Dataset:
return self._train_dataset
@train_dataset.setter
def train_dataset(self, dataset):
assert isinstance(dataset, Dataset), f"{type(dataset)} must be Dataset"
self._train_dataset = dataset
@property
def val_dataset(self) -> Dataset:
return self._val_dataset
@val_dataset.setter
def val_dataset(self, dataset):
assert isinstance(dataset, Dataset), f"{type(dataset)} must be Dataset"
self._val_dataset = dataset
@property
def collate_fn(self) -> Callable:
return self._collate_fn
@collate_fn.setter
def collate_fn(self, fn):
assert isinstance(fn, Callable), f"{type(fn)} must be Callable"
self._collate_fn = fn
@property
def evaluator(self) -> Callable:
return self._evaluator
@evaluator.setter
def evaluator(self, fn):
assert isinstance(fn, Callable), f"{type(fn)} must be Callable"
self._evaluator = fn
@property
def writer(self) -> SummaryWriter:
if self._writer is None:
if self.summary_dir:
self._writer = SummaryWriter(self.summary_dir)
elif self.output_dir:
self._writer = SummaryWriter(Path(self.output_dir) / "summary")
return self._writer
@writer.setter
def writer(self, m):
assert isinstance(m, SummaryWriter), f"{type(m)} must be SummaryWriter"
self._writer = m
def __repr__(self):
s = ""
for k, v in self.__dict__.items():
if not k.startswith("_"):
s += f"{k}: {v}\n"
return s