""" D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement Copyright (c) 2024 The D-FINE Authors. All Rights Reserved. --------------------------------------------------------------------------------- Modified from RT-DETR (https://github.com/lyuwenyu/RT-DETR) Copyright (c) 2023 lyuwenyu. All Rights Reserved. """ import math from copy import deepcopy import torch import torch.nn as nn from ..core import register from ..misc import dist_utils __all__ = ["ModelEMA"] @register() class ModelEMA(object): """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models Keep a moving average of everything in the model state_dict (parameters and buffers). This is intended to allow functionality like https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage A smoothed version of the weights is necessary for some training schemes to perform well. This class is sensitive where it is initialized in the sequence of model init, GPU assignment and distributed training wrappers. """ def __init__( self, model: nn.Module, decay: float = 0.9999, warmups: int = 1000, start: int = 0 ): super().__init__() self.module = deepcopy(dist_utils.de_parallel(model)).eval() # if next(model.parameters()).device.type != 'cpu': # self.module.half() # FP16 EMA self.decay = decay self.warmups = warmups self.before_start = 0 self.start = start self.updates = 0 # number of EMA updates if warmups == 0: self.decay_fn = lambda x: decay else: self.decay_fn = lambda x: decay * ( 1 - math.exp(-x / warmups) ) # decay exponential ramp (to help early epochs) for p in self.module.parameters(): p.requires_grad_(False) def update(self, model: nn.Module): if self.before_start < self.start: self.before_start += 1 return # Update EMA parameters with torch.no_grad(): self.updates += 1 d = self.decay_fn(self.updates) msd = dist_utils.de_parallel(model).state_dict() for k, v in self.module.state_dict().items(): if v.dtype.is_floating_point: v *= d v += (1 - d) * msd[k].detach() def to(self, *args, **kwargs): self.module = self.module.to(*args, **kwargs) return self def state_dict( self, ): return dict(module=self.module.state_dict(), updates=self.updates) def load_state_dict(self, state, strict=True): self.module.load_state_dict(state["module"], strict=strict) if "updates" in state: self.updates = state["updates"] def forwad( self, ): raise RuntimeError("ema...") def extra_repr(self) -> str: return f"decay={self.decay}, warmups={self.warmups}" class ExponentialMovingAverage(torch.optim.swa_utils.AveragedModel): """Maintains moving averages of model parameters using an exponential decay. ``ema_avg = decay * avg_model_param + (1 - decay) * model_param`` `torch.optim.swa_utils.AveragedModel `_ is used to compute the EMA. """ def __init__(self, model, decay, device="cpu", use_buffers=True): self.decay_fn = lambda x: decay * (1 - math.exp(-x / 2000)) def ema_avg(avg_model_param, model_param, num_averaged): decay = self.decay_fn(num_averaged) return decay * avg_model_param + (1 - decay) * model_param super().__init__(model, device, ema_avg, use_buffers=use_buffers)