Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,96 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
|
|
4 |
import faiss
|
5 |
import torch
|
6 |
-
from transformers import AutoTokenizer, AutoModel
|
7 |
-
from openai import OpenAI
|
8 |
from datetime import datetime
|
|
|
|
|
9 |
|
10 |
-
# β
Hugging Face
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
13 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
14 |
|
15 |
-
# β
Load
|
|
|
|
|
|
|
|
|
16 |
deberta_model_name = "microsoft/deberta-v3-base"
|
17 |
deberta_tokenizer = AutoTokenizer.from_pretrained(deberta_model_name)
|
18 |
deberta_model = AutoModel.from_pretrained(deberta_model_name).to("cpu")
|
19 |
|
20 |
-
# β
|
21 |
-
index = faiss.read_index("deberta_faiss.index")
|
22 |
-
text_data = pd.read_csv("deberta_text_data.csv")["Retrieved Text"].tolist()
|
23 |
-
|
24 |
-
# β
Embedding generator
|
25 |
def generate_embeddings(queries):
|
26 |
-
|
27 |
with torch.no_grad():
|
28 |
-
embeddings = deberta_model(**
|
29 |
return embeddings
|
30 |
|
31 |
-
# β
|
32 |
-
def generate_response(
|
33 |
-
# Embed the query and retrieve
|
34 |
-
query_embedding = generate_embeddings([
|
35 |
faiss.normalize_L2(query_embedding)
|
36 |
distances, indices = index.search(query_embedding, k=5)
|
37 |
-
|
38 |
-
context = "\n".join(
|
39 |
-
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
messages
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
# β
Gradio chatbot interface
|
74 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
75 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
chatbot = gr.Chatbot(label="Chatbot",
|
78 |
-
|
79 |
-
|
80 |
|
81 |
def respond(message, history):
|
82 |
if history is None:
|
83 |
history = []
|
84 |
-
|
85 |
-
history.append((message,
|
86 |
-
return history,
|
87 |
|
88 |
-
|
89 |
-
|
90 |
|
|
|
91 |
demo.launch()
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
import faiss
|
6 |
import torch
|
|
|
|
|
7 |
from datetime import datetime
|
8 |
+
from transformers import AutoTokenizer, AutoModel
|
9 |
+
from openai import OpenAI, OpenAIError
|
10 |
|
11 |
+
# β
Load Hugging Face and OpenAI credentials
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
14 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
15 |
|
16 |
+
# β
Load FAISS index and product data
|
17 |
+
index = faiss.read_index("deberta_faiss.index")
|
18 |
+
text_data = pd.read_csv("deberta_text_data.csv")["Retrieved Text"].tolist()
|
19 |
+
|
20 |
+
# β
Load DeBERTa for embedding
|
21 |
deberta_model_name = "microsoft/deberta-v3-base"
|
22 |
deberta_tokenizer = AutoTokenizer.from_pretrained(deberta_model_name)
|
23 |
deberta_model = AutoModel.from_pretrained(deberta_model_name).to("cpu")
|
24 |
|
25 |
+
# β
Helper: Generate embedding from DeBERTa
|
|
|
|
|
|
|
|
|
26 |
def generate_embeddings(queries):
|
27 |
+
tokens = deberta_tokenizer(queries, return_tensors="pt", padding=True, truncation=True).to("cpu")
|
28 |
with torch.no_grad():
|
29 |
+
embeddings = deberta_model(**tokens).last_hidden_state.mean(dim=1).cpu().numpy().astype("float32")
|
30 |
return embeddings
|
31 |
|
32 |
+
# β
Main logic: Compose RAG prompt and get GPT-3.5 response
|
33 |
+
def generate_response(user_message, chat_history):
|
34 |
+
# Embed the query and retrieve docs
|
35 |
+
query_embedding = generate_embeddings([user_message])
|
36 |
faiss.normalize_L2(query_embedding)
|
37 |
distances, indices = index.search(query_embedding, k=5)
|
38 |
+
retrieved_docs = [text_data[i] for i in indices[0]]
|
39 |
+
context = "\n".join(set(retrieved_docs))
|
40 |
+
|
41 |
+
# Build system prompt with context
|
42 |
+
system_prompt = f"""
|
43 |
+
You are a luxury home decor assistant. Use the product context below to answer questions about home interiors.
|
44 |
+
|
45 |
+
Product Descriptions:
|
46 |
+
{context}
|
47 |
+
|
48 |
+
Always provide helpful, elegant, and context-aware interior design suggestions.
|
49 |
+
Also suggest a follow-up question based on the user query to keep the conversation going.
|
50 |
+
"""
|
51 |
+
|
52 |
+
messages = [{"role": "system", "content": system_prompt}]
|
53 |
+
|
54 |
+
for message in chat_history:
|
55 |
+
messages.append({"role": "user", "content": message[0]})
|
56 |
+
messages.append({"role": "assistant", "content": message[1]})
|
57 |
+
|
58 |
+
messages.append({"role": "user", "content": user_message})
|
59 |
+
|
60 |
+
try:
|
61 |
+
response = client.chat.completions.create(
|
62 |
+
model="gpt-3.5-turbo",
|
63 |
+
messages=messages,
|
64 |
+
temperature=0.7,
|
65 |
+
max_tokens=512
|
66 |
+
)
|
67 |
+
reply = response.choices[0].message.content.strip()
|
68 |
+
except OpenAIError as e:
|
69 |
+
reply = f"β Error: {str(e)}"
|
70 |
+
|
71 |
+
return reply
|
72 |
+
|
73 |
+
# β
Gradio Chat UI
|
|
|
74 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
75 |
+
gr.Markdown("## πͺ Luxury Decor Assistant (RAG)")
|
76 |
+
gr.Markdown(
|
77 |
+
"π¬ Ask your interior design questions using real product descriptions. "
|
78 |
+
"Powered by **DeBERTa + FAISS** β now upgraded to **OpenAI GPT-3.5** for enhanced answers."
|
79 |
+
)
|
80 |
|
81 |
+
chatbot = gr.Chatbot(label="Chatbot", height=400)
|
82 |
+
msg = gr.Textbox(label="Textbox", placeholder="e.g. Suggest cozy decor for Neha Study room")
|
83 |
+
clear = gr.Button("Clear")
|
84 |
|
85 |
def respond(message, history):
|
86 |
if history is None:
|
87 |
history = []
|
88 |
+
response = generate_response(message, history)
|
89 |
+
history.append((message, response))
|
90 |
+
return history, ""
|
91 |
|
92 |
+
msg.submit(respond, [msg, chatbot], [chatbot, msg])
|
93 |
+
clear.click(lambda: ([], ""), None, [chatbot, msg])
|
94 |
|
95 |
+
# β
Launch the app
|
96 |
demo.launch()
|