Spaces:
Running
Running
Upload 6 files
Browse filesInitial commit: Added Luxury Decor Assistant RAG app with FAISS + DeBERTa + LLaMA-2
- .gitattributes +2 -0
- Online Retail.xlsx +3 -0
- app.py +67 -0
- deberta_embeddings.npy +3 -0
- deberta_faiss.index +3 -0
- deberta_text_data.csv +0 -0
- requirements.txt +6 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
deberta_faiss.index filter=lfs diff=lfs merge=lfs -text
|
37 |
+
Online[[:space:]]Retail.xlsx filter=lfs diff=lfs merge=lfs -text
|
Online Retail.xlsx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22d7d032ef5e8e9d039c16db624fc570ec2bacaf42e5dd3055cb5732971de78a
|
3 |
+
size 2220651
|
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import faiss
|
6 |
+
import torch
|
7 |
+
from transformers import AutoTokenizer, AutoModel, pipeline
|
8 |
+
|
9 |
+
# Load FAISS index and product data
|
10 |
+
index = faiss.read_index("deberta_faiss.index")
|
11 |
+
text_data = pd.read_csv("deberta_text_data.csv")["Retrieved Text"].tolist()
|
12 |
+
|
13 |
+
# Load DeBERTa model and tokenizer for embedding
|
14 |
+
deberta_model_name = "microsoft/deberta-v3-base"
|
15 |
+
deberta_tokenizer = AutoTokenizer.from_pretrained(deberta_model_name)
|
16 |
+
deberta_model = AutoModel.from_pretrained(deberta_model_name).to("cpu")
|
17 |
+
|
18 |
+
# Load LLaMA-2 tokenizer and pipeline
|
19 |
+
llama_model_name = "meta-llama/Llama-2-7b-chat-hf"
|
20 |
+
llama_tokenizer = AutoTokenizer.from_pretrained(llama_model_name)
|
21 |
+
llama_pipeline = pipeline("text-generation", model=llama_model_name, tokenizer=llama_tokenizer, device=-1)
|
22 |
+
|
23 |
+
# Function to generate embeddings from DeBERTa
|
24 |
+
def generate_embeddings(queries):
|
25 |
+
tokens = deberta_tokenizer(queries, return_tensors="pt", padding=True, truncation=True).to("cpu")
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = deberta_model(**tokens).last_hidden_state.mean(dim=1).cpu().numpy().astype("float32")
|
28 |
+
return outputs
|
29 |
+
|
30 |
+
# Define the RAG response logic
|
31 |
+
def generate_response(user_query):
|
32 |
+
query_embedding = generate_embeddings([user_query])
|
33 |
+
faiss.normalize_L2(query_embedding)
|
34 |
+
distances, indices = index.search(query_embedding, k=5)
|
35 |
+
retrieved_docs = [text_data[idx] for idx in indices[0]]
|
36 |
+
context = ", ".join(set(retrieved_docs))
|
37 |
+
|
38 |
+
prompt = f"""
|
39 |
+
Using the following product descriptions:
|
40 |
+
{context}
|
41 |
+
|
42 |
+
Carefully craft a well-structured response to the following question:
|
43 |
+
|
44 |
+
**Question:** {user_query}
|
45 |
+
|
46 |
+
**Instructions:**
|
47 |
+
1. Incorporate **all** retrieved product descriptions.
|
48 |
+
2. Use a **formal yet engaging** tone.
|
49 |
+
3. Provide **practical & creative** luxury decor ideas.
|
50 |
+
4. Ensure a **cohesive & detailed response.**
|
51 |
+
|
52 |
+
**Your response:**
|
53 |
+
"""
|
54 |
+
|
55 |
+
result = llama_pipeline(prompt, max_length=512, truncation=True, do_sample=True)[0]["generated_text"]
|
56 |
+
return result
|
57 |
+
|
58 |
+
# Gradio UI
|
59 |
+
interface = gr.Interface(
|
60 |
+
fn=generate_response,
|
61 |
+
inputs=gr.Textbox(lines=2, placeholder="Ask a question about luxury home decor..."),
|
62 |
+
outputs="text",
|
63 |
+
title="Luxury Decor Assistant (RAG)",
|
64 |
+
description="Ask your luxury decor questions based on real product descriptions!"
|
65 |
+
)
|
66 |
+
|
67 |
+
interface.launch()
|
deberta_embeddings.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bd48c0b806882c35bacac456c8885e228e2daf5dedf3bb6ee5a29a705fd83ec
|
3 |
+
size 87496832
|
deberta_faiss.index
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0961f49569103d709230403f8ca053da05fc5d73aebdf8f389a6590c7b01a29
|
3 |
+
size 87496749
|
deberta_text_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
faiss-cpu
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
pandas
|
6 |
+
numpy
|