File size: 23,171 Bytes
92fb594 fbc7c46 92fb594 fbc7c46 92fb594 fbc7c46 92fb594 fbc7c46 92fb594 384aef8 92fb594 384aef8 fd408d4 384aef8 cb90a47 25a91e0 e409a12 25a91e0 82a1288 e46428a 92fb594 99a5bdd fd408d4 e409a12 fd408d4 92fb594 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
from functools import partial
import gradio as gr
import os
import csv
import pandas as pd
import pickle
def load_results(gen_file, grader_file, exp_name, model_name, grader):
record = []
if 'llama' in model_name:
version = exp_name.split('_')[2]
k = exp_name.split('_')[0]
if k == 'k2' and version == 'v8':
return []
if k != 'k2' and version == 'v9':
return []
# read csv file
with open(gen_file, 'r') as file:
reader = csv.reader(file)
gen = list(reader)
with open(grader_file, 'r') as file:
reader = csv.reader(file)
grade = list(reader)
# print(gen_file, grader_file)
# print(gen[0], grade[0])
if len(gen) != len(grade):
# print("ERROR: len(gen) != len(grade)")
# print(gen_file, grader_file)
return []
else:
# print(gen[0], grade[0])
# exit(0)
#['k', 'skills', 'topic', 'system prompt', '[INST]_0', '[/INST]_0', 'model_input_0', 'text_0', '[INST]_1', '[/INST]_1', 'model_input_1', 'text_1']
# ['k', 'skills', 'topic', 'system prompt', 'user_0', 'assistant_0', 'model_input_0', 'score_0', 'score_extracted_0', 'points_0', 'num_sentences_manual_in_student_answer_0', 'true_sentence_lim_pt_0', 'num_sentences_extracted_eq_num_sentences_model_0']
for i in range(1, len(gen)):
skills = [skill.strip() for skill in gen[i][1].split(',')]
topic = gen[i][2]
assert(skills == [skill.strip() for skill in grade[i][1].split(',')])
assert(topic == grade[i][2])
points = grade[i][9].split(',')
if len(points) < len(skills):
points = points + ['0.0'] * (len(skills) - len(points))
points[-1] = grade[i][11]
points_no_skill_name = points.copy()
answer = gen[i][-1]
for skill_id, skill in enumerate(skills):
simple_skill = skill.split('(')[0].strip()
if simple_skill in answer:
# print(skill_id, skill, simple_skill, answer, points_no_skill_name, points)
points_no_skill_name[skill_id] = '0.0'
record.append({
'k': gen[i][0],
'exp_name': exp_name,
'model': model_name,
'grader': 'gpt-4' if 'gpt-4' in grader else 'llama-2-70b',
'grade_run': grader,
'skills': '\n\n'.join(skills),
'topic': topic,
'topic+skills': '+'.join([topic] + sorted(skills)),
'gen_prompt': gen[i][4].split('examples for the concepts:')[1].split('Please start the minimal natural')[0].replace('\n', '\n\n'),
'gen': gen[i][-3].replace('\n', '\n\n'),
'grade': grade[i][5].replace('\n', '\n\n'),
'points': ' '.join([(g[:-2] if g[-2:] == '.0' else g) for g in points]),
'points_no_skill_name': ' '.join([(g[:-2] if g[-2:] == '.0' else g) for g in points_no_skill_name]),
# 'sent_limit_point': grade[i][11]
})
return record
def load_all_results(path='final'):
all_results = []
for exp_name in os.listdir(path):
if os.path.isfile(os.path.join(path, exp_name)):
continue
for model_name in os.listdir(os.path.join(path, exp_name)):
gen_file = os.path.join(path, exp_name, model_name, "records.csv")
if os.path.exists(gen_file) and os.path.isdir(os.path.join(path, exp_name, model_name, 'graded')):
for grader in os.listdir(os.path.join(path, exp_name, model_name, 'graded')):
grader_file = os.path.join(path, exp_name, model_name, 'graded', grader, "records.csv")
if os.path.exists(grader_file):
all_results += load_results(gen_file, grader_file, exp_name, model_name, grader)
return pd.DataFrame(all_results)
block_css = """
#a {
color: black;
background-color: #DEEBF7;
font-size: 20px;
}
#b {
color: black;
background-color: #E2F0D9;
font-size: 20px;
}
#c {
color: black;
background-color: #FFF2CC;
font-size: 20px;
}
#d {
color: black;
background-color: #FBE5D6;
font-size: 20px;
}
"""
from Levenshtein import distance
def best_match(comb, comb_list):
if comb == '':
return comb_list[0]
dist = [distance(comb.split('+'), comb_.split('+')) for comb_ in comb_list]
return comb_list[dist.index(min(dist))]
class Tracker:
def __init__(self, df) -> None:
self.df = df
self.value = {k: '' for k in ['k', 'k_list', 'comb', 'comb_list', 'model', 'model_list', 'exp_name', 'exp_name_list', 'topic', 'skills', 'gen_prompt', 'gen', 'grader', 'grader_list', 'grader_run', 'grader_run_list', 'points', 'grade']}
# self.value = {k: '' for k in ['k', 'k_list', 'comb', 'comb_list', 'model', 'model_list', 'exp_name', 'exp_name_list', 'topic', 'skills', 'gen_prompt', 'gen', 'grader', 'grader_list', 'grader_run', 'grader_run_list', 'points', 'sent_limit_point', 'grade']}
self.value = self.update(self.value)
self.value = [self.value.copy() for _ in range(5)]
self.component = [{k: '' for k in ['k', 'comb', 'model', 'exp_name', 'topic', 'skills', 'gen_prompt', 'gen', 'grader', 'grader_run', 'points', 'grade']} for _ in range(5)]
# self.component = [{k: '' for k in ['k', 'comb', 'model', 'exp_name', 'topic', 'skills', 'gen_prompt', 'gen', 'grader', 'grader_run', 'points', 'sent_limit_point', 'grade']} for _ in range(5)]
def update(self, value):
cdf = self.df
k, comb, model, exp_name, grader, grader_run = value['k'], value['comb'], value['model'], value['exp_name'], value['grader'], value['grader_run']
k_list = sorted(list(cdf.k.unique()))
if k not in k_list:
k = k_list[0]
value['k'] = k
value['k_list'] = k_list
cdf = cdf[cdf.k==k]
comb_list = sorted(list(cdf['topic+skills'].unique()))
if comb not in comb_list:
comb = best_match(comb, comb_list)
value['comb'] = comb
value['comb_list'] = comb_list
cdf = cdf[cdf['topic+skills']==comb]
model_list = sorted(list(cdf['model'].unique()))
if model not in model_list:
model = model_list[0]
value['model'] = model
value['model_list'] = model_list
cdf = cdf[cdf.model==model]
exp_name_list = sorted(list(cdf['exp_name'].unique()))
if exp_name not in exp_name_list:
exp_name = exp_name_list[0]
value['exp_name'] = exp_name
value['exp_name_list'] = exp_name_list
cdf = cdf[cdf.exp_name==exp_name]
value['topic'] = "*Topic*: " + cdf['topic'].unique()[0]
value['skills'] = "*Skills*: \n\n" + cdf['skills'].unique()[0]
value['gen_prompt'] = "*Skill Definition and Example*:\n\n" + cdf['gen_prompt'].unique()[0]
value['gen'] = "*Model Answer*:\n\n" + cdf['gen'].unique()[0]
grader_list = sorted(list(cdf['grader'].unique()))
if grader not in grader_list:
grader = grader_list[0]
value['grader'] = grader
value['grader_list'] = grader_list
cdf = cdf[cdf.grader==grader]
grader_run_list = sorted(list(cdf['grade_run'].unique()))
if grader_run not in grader_run_list:
grader_run = grader_run_list[0]
value['grader_run'] = grader_run
value['grader_run_list'] = grader_run_list
cdf = cdf[cdf.grade_run==grader_run]
value['points'] = "Points: " + cdf['points'].unique()[0] + "\n\n(After deducting points for explicitly mentioning skill names: " + cdf['points_no_skill_name'].unique()[0] + ")"
# value['sent_limit_point'] = "within sentence limit? " + cdf['sent_limit_point'].unique()[0]
value['grade'] = cdf['grade'].unique()[0]
return value
def procedure(self, c):
input_list = []
output_list = []
fn_list = []
# binding = [['k', [0, 1, 3]],
# ['comb', [0, 1, 3]],
# ['model', [0, 1, 3]],
# ['exp_name', [0, 1, 3]],
# ['grader', [0, 1, 3]],
# ['grader_run', [0, 1, 3]],
# ]
binding = []
idx = -1
for i in range(5):
for k, v in self.component[i].items():
if v is c:
idx = i
key = k
break
if idx != -1:
break
assert(idx != -1)
# print(id(c), id(self.component[idx][key]), idx, key)
sync_list = []
for b in binding:
if (key == b[0]) and (idx in b[1]):
sync_list = [j for j in b[1] if j != idx]
sync_component = [self.component[j][key] for j in sync_list]
# print(c.label, key, idx, sync_list)
def sync(v, sync_list=[0]):
return [gr.Dropdown.update(value=v) for _ in range(len(sync_list))]
if len(sync_list) > 0:
input_list.append(c)
output_list.append(sync_component)
fn_list.append(partial(sync, sync_list=sync_list))
def update(k, comb, model, exp_name, grader, grader_run):
value = {
'k': k,
'k_list': '',
'comb': comb,
'comb_list': '',
'model': model,
'model_list': '',
'exp_name': exp_name,
'exp_name_list': '',
'topic': '',
'skills': '',
'gen_prompt': '',
'gen': '',
'grader': grader,
'grader_list': '',
'grader_run': grader_run,
'grader_run_list': '',
'points': '',
'sent_limit_point': '',
'grade': ''
}
value = self.update(value)
return [gr.Dropdown.update(value=value['k'], choices=value['k_list']),
gr.Dropdown.update(value=value['comb'], choices=value['comb_list']),
gr.Dropdown.update(value=value['model'], choices=value['model_list']),
gr.Dropdown.update(value=value['exp_name'], choices=value['exp_name_list']),
value['topic'],
value['skills'],
value['gen_prompt'],
value['gen'],
gr.Dropdown.update(value=value['grader'], choices=value['grader_list']),
gr.Dropdown.update(value=value['grader_run'], choices=value['grader_run_list']),
value['points'],
# value['sent_limit_point'],
value['grade']
]
sync_list += [idx]
update_list = []
for i in range(5):
for j in sync_list:
if self.component[j][key] is self.component[i][key]:
update_list.append(i)
break
for j in update_list:
input_list.append([self.component[j][k] for k in ['k', 'comb', 'model', 'exp_name', 'grader', 'grader_run']])
output_list.append([self.component[j][k] for k in ['k', 'comb', 'model', 'exp_name', 'topic', 'skills', 'gen_prompt', 'gen', 'grader', 'grader_run', 'points', 'grade']])
# output_list.append([self.component[j][k] for k in ['k', 'comb', 'model', 'exp_name', 'topic', 'skills', 'gen_prompt', 'gen', 'grader', 'grader_run', 'points', 'sent_limit_point', 'grade']])
fn_list.append(update)
return input_list, output_list, fn_list
def build_demo(df):
tracker = Tracker(df)
with gr.Blocks(
title="Skill-Mix: a Flexible and Expandable Family of Evaluations for AI models",
theme=gr.themes.Base(text_size=gr.themes.sizes.text_lg),
css=block_css,
) as demo:
gr.Markdown(
"""
# Skill-Mix: a Flexible and Expandable Family of Evaluations for AI models
By [Princeton Language and Intelligence (PLI), Princeton University](https://pli.princeton.edu/) and [Google DeepMind](https://www.deepmind.com/)
### This is a demonstration of the Skill-Mix evaluation.
Paper link: [https://arxiv.org/abs/2310.17567](https://arxiv.org/abs/2310.17567)
### Samples are generated using 10% of the full set of skills and topics. Click the second tab for comparison between two generations.
Coming soon: generation by more models; grading by LLaMA-2.
"""
)
with gr.Tab('Browse Single Generation'):
v = tracker.value[0]
with gr.Row():
k = gr.Dropdown(choices=v['k_list'], value=v['k'], label="k")
tracker.component[0]['k'] = k
comb = gr.Dropdown(choices=v['comb_list'], value=v['comb'], label="topic+skills")
tracker.component[0]['comb'] = comb
with gr.Row():
with gr.Column():
with gr.Row():
model = gr.Dropdown(choices=v['model_list'], value=v['model'], label="model")
tracker.component[0]['model'] = model
exp_name = gr.Dropdown(choices=v['exp_name_list'], value=v['exp_name'], label="exp_name")
tracker.component[0]['exp_name'] = exp_name
with gr.Row():
topic = gr.Markdown(value=v['topic'], elem_id='a')
tracker.component[0]['topic'] = topic
skills = gr.Markdown(value=v['skills'], elem_id='a')
tracker.component[0]['skills'] = skills
gen = gr.Markdown(value=v['gen'], elem_id='b')
tracker.component[0]['gen'] = gen
gen_prompt = gr.Markdown(value=v['gen_prompt'], elem_id='a')
tracker.component[0]['gen_prompt'] = gen_prompt
with gr.Column():
with gr.Row():
grader = gr.Dropdown(choices=v['grader_list'], value=v['grader'], label="grader")
tracker.component[0]['grader'] = grader
grader_run = gr.Dropdown(choices=v['grader_run_list'], value=v['grader_run'], label="grader_run")
tracker.component[0]['grader_run'] = grader_run
points = gr.Markdown(value=v['points'], elem_id='c')
tracker.component[0]['points'] = points
# sent_limit_point = gr.Markdown(value=v['sent_limit_point'], elem_id='c')
# tracker.component[0]['sent_limit_point'] = sent_limit_point
grade = gr.Markdown(value=v['grade'], elem_id='d')
tracker.component[0]['grade'] = grade
with gr.Tab('Compare Two Generations'):
v = tracker.value[1]
with gr.Row():
k = gr.Dropdown(choices=v['k_list'], value=v['k'], label="k")
tracker.component[1]['k'] = tracker.component[2]['k'] = k
comb = gr.Dropdown(choices=v['comb_list'], value=v['comb'], label="topic+skills")
tracker.component[1]['comb'] = tracker.component[2]['comb'] = comb
with gr.Row():
for col in range(1, 3):
v = tracker.value[col]
with gr.Column():
with gr.Row():
model = gr.Dropdown(choices=v['model_list'], value=v['model'], label="model")
tracker.component[col]['model'] = model
exp_name = gr.Dropdown(choices=v['exp_name_list'], value=v['exp_name'], label="exp_name")
tracker.component[col]['exp_name'] = exp_name
with gr.Row():
topic = gr.Markdown(value=v['topic'], elem_id='a')
tracker.component[col]['topic'] = topic
skills = gr.Markdown(value=v['skills'], elem_id='a')
tracker.component[col]['skills'] = skills
gen = gr.Markdown(value=v['gen'], elem_id='b')
tracker.component[col]['gen'] = gen
with gr.Row():
grader = gr.Dropdown(choices=v['grader_list'], value=v['grader'], label="grader")
tracker.component[col]['grader'] = grader
grader_run = gr.Dropdown(choices=v['grader_run_list'], value=v['grader_run'], label="grader_run")
tracker.component[col]['grader_run'] = grader_run
points = gr.Markdown(value=v['points'], elem_id='c')
tracker.component[col]['points'] = points
# sent_limit_point = gr.Markdown(value=v['sent_limit_point'], elem_id='c')
# tracker.component[col]['sent_limit_point'] = sent_limit_point
gen_prompt = gr.Markdown(value=v['gen_prompt'], elem_id='a')
tracker.component[col]['gen_prompt'] = gen_prompt
grade = gr.Markdown(value=v['grade'], elem_id='d')
tracker.component[col]['grade'] = grade
# with gr.Tab('One Generation Two Grading'):
# v = tracker.value[3]
# with gr.Row():
# k = gr.Dropdown(choices=v['k_list'], value=v['k'], label="k")
# tracker.component[3]['k'] = tracker.component[4]['k'] = k
# comb = gr.Dropdown(choices=v['comb_list'], value=v['comb'], label="topic+skills")
# tracker.component[3]['comb'] = tracker.component[4]['comb'] = comb
# with gr.Row():
# model = gr.Dropdown(choices=v['model_list'], value=v['model'], label="model")
# tracker.component[3]['model'] = tracker.component[4]['model'] = model
# exp_name = gr.Dropdown(choices=v['exp_name_list'], value=v['exp_name'], label="exp_name")
# tracker.component[3]['exp_name'] = tracker.component[4]['exp_name'] = exp_name
# with gr.Row():
# topic = gr.Markdown(value=v['topic'], elem_id='a')
# tracker.component[3]['topic'] = tracker.component[4]['topic'] = topic
# skills = gr.Markdown(value=v['skills'], elem_id='a')
# tracker.component[3]['skills'] = tracker.component[4]['skills'] = skills
# gen = gr.Markdown(value=v['gen'], elem_id='b')
# tracker.component[3]['gen'] = tracker.component[4]['gen'] = gen
# with gr.Row():
# for col in range(3, 5):
# v = tracker.value[col]
# with gr.Column():
# with gr.Row():
# grader = gr.Dropdown(choices=v['grader_list'], value=v['grader'], label="grader")
# tracker.component[col]['grader'] = grader
# grader_run = gr.Dropdown(choices=v['grader_run_list'], value=v['grader_run'], label="grader_run")
# tracker.component[col]['grader_run'] = grader_run
# points = gr.Markdown(value=v['points'], elem_id='c')
# tracker.component[col]['points'] = points
# sent_limit_point = gr.Markdown(value=v['sent_limit_point'], elem_id='c')
# tracker.component[col]['sent_limit_point'] = sent_limit_point
# grade = gr.Markdown(value=v['grade'], elem_id='d')
# tracker.component[col]['grade'] = grade
# gen_prompt = gr.Markdown(value=v['gen_prompt'], elem_id='a')
# tracker.component[3]['gen_prompt'] = tracker.component[4]['gen_prompt'] = gen_prompt
all_components = sum([list(tracker.component[i].values()) for i in range(5)], [])
all_components = [c for c in all_components if c != '']
all_components = list(set(all_components))
# print(all_components)
for c in all_components:
input_list, output_list, fn_list = tracker.procedure(c)
if len(fn_list) > 0:
if len(fn_list) == 1:
c.change(fn_list[0], input_list[0], output_list[0])
elif len(fn_list) == 2:
c.change(fn_list[0], input_list[0], output_list[0]).then(fn_list[1], input_list[1], output_list[1])
elif len(fn_list) == 3:
c.change(fn_list[0], input_list[0], output_list[0]).then(fn_list[1], input_list[1], output_list[1]).then(fn_list[2], input_list[2], output_list[2])
elif len(fn_list) == 4:
c.change(fn_list[0], input_list[0], output_list[0]).then(fn_list[1], input_list[1], output_list[1]).then(fn_list[2], input_list[2], output_list[2]).then(fn_list[3], input_list[3], output_list[3])
elif len(fn_list) == 5:
c.change(fn_list[0], input_list[0], output_list[0]).then(fn_list[1], input_list[1], output_list[1]).then(fn_list[2], input_list[2], output_list[2]).then(fn_list[3], input_list[3], output_list[3]).then(fn_list[4], input_list[4], output_list[4])
elif len(fn_list) == 6:
c.change(fn_list[0], input_list[0], output_list[0]).then(fn_list[1], input_list[1], output_list[1]).then(fn_list[2], input_list[2], output_list[2]).then(fn_list[3], input_list[3], output_list[3]).then(fn_list[4], input_list[4], output_list[4]).then(fn_list[5], input_list[5], output_list[5])
else:
raise NotImplementedError
gr.Markdown('''### Citations
```
@article{yu2023skillmix,
title={Skill-Mix: a Flexible and Expandable Family of Evaluations for AI models},
author={Yu, Dingli and Kaur, Simran and Gupta, Arushi and Brown-Cohen, Jonah and Goyal, Anirudh and Arora, Sanjeev},
journal={arXiv preprint arXiv:2310.17567},
year={2023}
}
```
```
@misc{openai2023gpt4,
title={GPT-4 Technical Report},
author={OpenAI},
year={2023},
eprint={2303.08774},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@article{touvron2023llama,
title={Llama 2: Open foundation and fine-tuned chat models},
author={Touvron, Hugo and Martin, Louis and Stone, Kevin and Albert, Peter and Almahairi, Amjad and Babaei, Yasmine and Bashlykov, Nikolay and Batra, Soumya and Bhargava, Prajjwal and Bhosale, Shruti and others},
journal={arXiv preprint arXiv:2307.09288},
year={2023}
}
```
''')
return demo
if __name__ == '__main__':
# df = load_all_results(path="../../on_released_topics_and_skills")
# pickle.dump(df, open('on_released_topics_and_skills.pkl', 'wb'))
df = pickle.load(open('on_released_topics_and_skills.pkl', 'rb'))
demo = build_demo(df)
# demo.launch(share=True)
demo.launch()
|