File size: 1,925 Bytes
1fad1ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0c7921
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import librosa
import gradio as gr
from transformers import WhisperProcessor, WhisperForConditionalGeneration, AutoTokenizer, AutoModelForCausalLM

# Load models from the Space or from Hugging Face Hub
whisper_model = WhisperForConditionalGeneration.from_pretrained("donnamae/whisper-finetuned-cebuano-accent", token=True)
whisper_processor = WhisperProcessor.from_pretrained("donnamae/whisper-finetuned-cebuano-accent", token=True)

code_tokenizer = AutoTokenizer.from_pretrained("meta-llama/CodeLlama-7b-Instruct-hf")
code_model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/CodeLlama-7b-Instruct-hf", 
    torch_dtype="auto",
    device_map="auto",
    trust_remote_code=True
).to("cuda" if torch.cuda.is_available() else "cpu")

def transcribe_and_generate(audio):
    audio_data, sr = librosa.load(audio, sr=16000)
    input_features = whisper_processor(audio_data, sampling_rate=sr, return_tensors="pt").input_features
    predicted_ids = whisper_model.generate(input_features)
    transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]

    # Format prompt for code generation
    prompt = f"# Task: {transcription.strip()}\n\n```python\n"
    inputs = code_tokenizer(prompt, return_tensors="pt").to(code_model.device)

    outputs = code_model.generate(**inputs, max_length=256)
    generated_text = code_tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Extract clean code
    generated_code = generated_text.replace(prompt, "").strip().split("```")[0]

    return transcription, generated_code

demo = gr.Interface(
    fn=transcribe_and_generate,
    inputs=gr.Audio(type="filepath"),
    outputs=[gr.Text(label="Transcribed Command"), gr.Code(label="Generated Code")],
    title="Voice-to-Code Generator",
    description="Speak your coding command. The system will transcribe and generate the corresponding code."
)

demo.launch(share=True)