Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import pipeline | |
import tempfile | |
# Set the Streamlit page config | |
st.set_page_config(page_title="Meeting Summarizer", layout="centered") | |
# Title | |
st.title("π Intelligent Meeting Summarizer") | |
st.write("Upload your English meeting audio, and we'll generate a professional summary for you using Hugging Face models.") | |
# Load ASR pipeline | |
def load_asr_pipeline(): | |
return pipeline("automatic-speech-recognition", model="facebook/s2t-medium-librispeech-asr") | |
# Load Text Generation pipeline | |
def load_summary_pipeline(): | |
return pipeline( | |
task="text-generation", | |
model="huggyllama/llama-7b", | |
torch_dtype=torch.float16, | |
device=0 # set to -1 for CPU | |
) | |
asr_pipeline = load_asr_pipeline() | |
gen_pipeline = load_summary_pipeline() | |
# Upload audio file | |
uploaded_file = st.file_uploader("π€ Upload your meeting audio (.wav)", type=["wav", "mp3", "flac"]) | |
if uploaded_file is not None: | |
# Save to temp file | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio: | |
tmp_audio.write(uploaded_file.read()) | |
tmp_audio_path = tmp_audio.name | |
st.audio(uploaded_file, format='audio/wav') | |
if st.button("π Transcribe and Summarize"): | |
# ASR: Audio to Text | |
with st.spinner("Transcribing audio..."): | |
result = asr_pipeline(tmp_audio_path) | |
transcription = result["text"] | |
st.subheader("π Transcribed Text") | |
st.write(transcription) | |
# Text to Text | |
with st.spinner("Generating summary..."): | |
prompt = f"Summarize the following meeting transcript into a professional meeting report:\n{transcription}\n\nSummary:" | |
summary = gen_pipeline(prompt, max_new_tokens=300, do_sample=True, top_k=50, temperature=0.7)[0]["generated_text"] | |
st.subheader("π§ Meeting Summary") | |
st.write(summary) |