ish028792 commited on
Commit
5abc5ec
·
verified ·
1 Parent(s): 27d8f12

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -32
app.py CHANGED
@@ -11,40 +11,9 @@ examples = [
11
  ]
12
 
13
  # Title and description
14
- title = "🔎 Skin Cancer Image Classification - Classificazione di Tumori della Pelle"
15
- description = """
16
- ### Description
17
- This app classifies skin cancer images into different categories using an AI model. 🖼️✨
18
- Upload your own image or use one of the examples to see the results.
19
 
20
- **DISCLAIMER⚠️**\n
21
- **This demo is for educational and informational purposes only**.It is not intended to provide a medical diagnosis, nor should it be considered a substitute for professional medical advice, diagnosis, or treatment. We are not liable for any misclassification of skin cancer images. If you have concerns about your health, please consult a healthcare professional.
22
 
23
- ### Descrizione
24
- Questa app classifica le immagini di cancro della pelle in diverse categorie utilizzando un modello che utilizza intelligenza artificiale. 🖼️✨
25
- Carica la tua immagine o usa uno degli esempi elencati qui sotto per vedere i risultati.
26
-
27
- **AVVISO⚠️**\n
28
- Questa demo è solo a scopo educativo e informativo. Non è intesa a fornire una diagnosi medica, né deve essere considerata un sostituto di un consulto medico professionale, una diagnosi o un trattamento. Non siamo responsabili per eventuali errori nella classificazione delle immagini di cancro della pelle. Se hai preoccupazioni sulla tua salute, consulta un professionista sanitario.
29
-
30
- ### About Us
31
-
32
- We are researchers in the [AImageLab](https://aimagelab.ing.unimore.it/imagelab/) 🔬 of the University of Modena and Reggio Emilia.
33
- Some of us are working on **Artificial Intelligence for Medical Imaging** 🧠🧑‍⚕️👩‍⚕️🥼
34
- \n
35
- Siamo dei ricercatori del laboratorio [AImageLab](https://aimagelab.ing.unimore.it/imagelab/) 🔬 dell' Università di Modena e Reggio Emilia.
36
- Alcuni di noi lavorano sul **Medical Imaging con uso di Intelligenza Artificiale** 🧠🧑‍⚕️👩‍⚕️🥼
37
-
38
- ### Technical Details 🤓
39
- The architecture used is a pre- trained Vision Transformer (ViT) on the ImageNet21k, with a fine-tuning on the [HAM10k dataset](https://huggingface.co/datasets/marmal88/skin_cancer) and a modified head to accommodate for the classes: Benign keratosis-like lesions, Basal cell carcinoma, Actinic keratoses, Vascular lesions, Melanocytic nevi, Melanoma, Dermatofibroma.
40
- The best validation accuracy obtained was 0.9695. However this score is not a good indicator of performance given the class imbalances present in the dataset.
41
-
42
- ### Credits
43
-
44
- Original model trained and uploaded on Hugging Face by user [Anwarkh1](https://huggingface.co/Anwarkh1).
45
- HF Space dapted and updated by [Ettore Candeloro](https://ettorecandeloro.me/)
46
-
47
- """
48
 
49
  # Load the model and launch the app with title, description, examples,
50
  demo = gr.load("models/Anwarkh1/Skin_Cancer-Image_Classification", examples=examples, title=title, description=description).launch()
 
11
  ]
12
 
13
  # Title and description
14
+ title = "Melanoma skin Cancer detection "
 
 
 
 
15
 
 
 
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  # Load the model and launch the app with title, description, examples,
19
  demo = gr.load("models/Anwarkh1/Skin_Cancer-Image_Classification", examples=examples, title=title, description=description).launch()