Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -22,18 +22,34 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
22 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
23 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
24 |
|
25 |
-
model_name = "
|
26 |
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
28 |
model_name,
|
29 |
-
torch_dtype=
|
30 |
device_map="auto"
|
31 |
)
|
32 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
33 |
|
|
|
|
|
|
|
|
|
34 |
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def generate(
|
38 |
message: str,
|
39 |
chat_history: list[tuple[str, str]],
|
@@ -136,4 +152,4 @@ with gr.Blocks(css="style.css", fill_height=True) as demo:
|
|
136 |
chat_interface.render()
|
137 |
|
138 |
if __name__ == "__main__":
|
139 |
-
demo.queue(max_size=20).launch()
|
|
|
22 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
23 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
24 |
|
25 |
+
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
26 |
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
28 |
model_name,
|
29 |
+
torch_dtype="fp16",,
|
30 |
device_map="auto"
|
31 |
)
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
33 |
|
34 |
+
peft_model = AutoPeftModelForCausalLM.from_pretrained("ehristoforu/CoolQwen2.5-3b-it")
|
35 |
+
merged_model = peft_model.merge_and_unload()
|
36 |
+
merged_model.save_pretrained("./coolqwen")
|
37 |
+
tokenizer.save_pretraiend("./coolqwen")
|
38 |
|
39 |
+
from huggingface_hub import HfApi
|
40 |
|
41 |
+
api = HfApi()
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
api.upload_folder(
|
46 |
+
folder_path="./coolqwen",
|
47 |
+
repo_id="ehristoforu/CoolQwen2.5-3B-IT-fp16",
|
48 |
+
repo_type="model",
|
49 |
+
token=HF_TOKEN,
|
50 |
+
)
|
51 |
+
|
52 |
+
@spaces.GPU(duration=240)
|
53 |
def generate(
|
54 |
message: str,
|
55 |
chat_history: list[tuple[str, str]],
|
|
|
152 |
chat_interface.render()
|
153 |
|
154 |
if __name__ == "__main__":
|
155 |
+
demo.queue(max_size=20).launch()
|