kolcontrl / app-backup.py
fantos's picture
Rename app (14).py to app-backup.py
1b21c76 verified
raw
history blame
13.5 kB
import spaces
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from annotator.midas import MidasDetector
from annotator.dwpose import DWposeDetector
from annotator.util import resize_image, HWC3
device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device)
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet = controlnet_depth,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
force_zeros_for_empty_prompt=False
)
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet = controlnet_canny,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
force_zeros_for_empty_prompt=False
)
pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet = controlnet_pose,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
force_zeros_for_empty_prompt=False
)
@spaces.GPU
def process_canny_condition(image, canny_threods=[100,200]):
np_image = image.copy()
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
np_image = np_image[:, :, None]
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
np_image = HWC3(np_image)
return Image.fromarray(np_image)
model_midas = MidasDetector()
@spaces.GPU
def process_depth_condition_midas(img, res = 1024):
h,w,_ = img.shape
img = resize_image(HWC3(img), res)
result = HWC3(model_midas(img))
result = cv2.resize(result, (w,h))
return Image.fromarray(result)
model_dwpose = DWposeDetector()
@spaces.GPU
def process_dwpose_condition(image, res=1024):
h,w,_ = image.shape
img = resize_image(HWC3(image), res)
out_res, out_img = model_dwpose(image)
result = HWC3(out_img)
result = cv2.resize( result, (w,h) )
return Image.fromarray(result)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer_depth(prompt,
image = None,
negative_prompt = "nsfwοΌŒθ„Έιƒ¨ι˜΄ε½±οΌŒδ½Žεˆ†θΎ¨ηŽ‡οΌŒjpegδΌͺε½±γ€ζ¨‘η³Šγ€η³Ÿη³•οΌŒι»‘θ„ΈοΌŒιœ“θ™Ήη―",
seed = 397886929,
randomize_seed = False,
guidance_scale = 6.0,
num_inference_steps = 50,
controlnet_conditioning_scale = 0.7,
control_guidance_end = 0.9,
strength = 1.0
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
init_image = resize_image(image, MAX_IMAGE_SIZE)
pipe = pipe_depth.to("cuda")
condi_img = process_depth_condition_midas( np.array(init_image), MAX_IMAGE_SIZE)
image = pipe(
prompt= prompt ,
image = init_image,
controlnet_conditioning_scale = controlnet_conditioning_scale,
control_guidance_end = control_guidance_end,
strength= strength ,
control_image = condi_img,
negative_prompt= negative_prompt ,
num_inference_steps= num_inference_steps,
guidance_scale= guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return [condi_img, image], seed
@spaces.GPU
def infer_canny(prompt,
image = None,
negative_prompt = "nsfwοΌŒθ„Έιƒ¨ι˜΄ε½±οΌŒδ½Žεˆ†θΎ¨ηŽ‡οΌŒjpegδΌͺε½±γ€ζ¨‘η³Šγ€η³Ÿη³•οΌŒι»‘θ„ΈοΌŒιœ“θ™Ήη―",
seed = 397886929,
randomize_seed = False,
guidance_scale = 6.0,
num_inference_steps = 50,
controlnet_conditioning_scale = 0.7,
control_guidance_end = 0.9,
strength = 1.0
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
init_image = resize_image(image, MAX_IMAGE_SIZE)
pipe = pipe_canny.to("cuda")
condi_img = process_canny_condition(np.array(init_image))
image = pipe(
prompt= prompt ,
image = init_image,
controlnet_conditioning_scale = controlnet_conditioning_scale,
control_guidance_end = control_guidance_end,
strength= strength ,
control_image = condi_img,
negative_prompt= negative_prompt ,
num_inference_steps= num_inference_steps,
guidance_scale= guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return [condi_img, image], seed
@spaces.GPU
def infer_pose(prompt,
image = None,
negative_prompt = "nsfwοΌŒθ„Έιƒ¨ι˜΄ε½±οΌŒδ½Žεˆ†θΎ¨ηŽ‡οΌŒjpegδΌͺε½±γ€ζ¨‘η³Šγ€η³Ÿη³•οΌŒι»‘θ„ΈοΌŒιœ“θ™Ήη―",
seed = 66,
randomize_seed = False,
guidance_scale = 6.0,
num_inference_steps = 50,
controlnet_conditioning_scale = 0.7,
control_guidance_end = 0.9,
strength = 1.0
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
init_image = resize_image(image, MAX_IMAGE_SIZE)
pipe = pipe_pose.to("cuda")
condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE)
image = pipe(
prompt= prompt ,
image = init_image,
controlnet_conditioning_scale = controlnet_conditioning_scale,
control_guidance_end = control_guidance_end,
strength= strength ,
control_image = condi_img,
negative_prompt= negative_prompt ,
num_inference_steps= num_inference_steps,
guidance_scale= guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return [condi_img, image], seed
canny_examples = [
["μ•„λ¦„λ‹€μš΄ μ†Œλ…€, κ³ ν’ˆμ§ˆ, 맀우 μ„ λͺ…, μƒμƒν•œ 색상, μ΄ˆκ³ ν•΄μƒλ„, μ΅œμƒμ˜ ν’ˆμ§ˆ, 8k, κ³ ν™”μ§ˆ, 4K",
"image/woman_1.png"],
["νŒŒλ…ΈλΌλ§ˆ, μ»΅ μ•ˆμ— μ•‰μ•„μžˆλŠ” κ·€μ—¬μš΄ 흰 κ°•μ•„μ§€, 카메라λ₯Ό λ°”λΌλ³΄λŠ”, μ• λ‹ˆλ©”μ΄μ…˜ μŠ€νƒ€μΌ, 3D λ Œλ”λ§, μ˜₯ν…ŒμΈ λ Œλ”",
"image/dog.png"]
]
depth_examples = [
["신카이 λ§ˆμ½”ν†  μŠ€νƒ€μΌ, ν’λΆ€ν•œ 색감, 초둝 μ…”μΈ λ₯Ό μž…μ€ 여성이 λ“€νŒμ— μ„œ μžˆλŠ”, μ•„λ¦„λ‹€μš΄ 풍경, λ§‘κ³  밝은, 얼룩진 λΉ›κ³Ό 그림자, 졜고의 ν’ˆμ§ˆ, μ΄ˆμ„Έλ°€, 8K ν™”μ§ˆ",
"image/woman_2.png"],
["ν™”λ €ν•œ μƒ‰μƒμ˜ μž‘μ€ μƒˆ, κ³ ν’ˆμ§ˆ, 맀우 μ„ λͺ…, μƒμƒν•œ 색상, μ΄ˆκ³ ν•΄μƒλ„, μ΅œμƒμ˜ ν’ˆμ§ˆ, 8k, κ³ ν™”μ§ˆ, 4K",
"image/bird.png"]
]
pose_examples = [
["보라색 퍼프 슬리브 λ“œλ ˆμŠ€λ₯Ό μž…κ³  μ™•κ΄€κ³Ό 흰색 레이슀 μž₯갑을 λ‚€ μ†Œλ…€κ°€ μ–‘ μ†μœΌλ‘œ 얼꡴을 감싸고 μžˆλŠ”, κ³ ν’ˆμ§ˆ, 맀우 μ„ λͺ…, μƒμƒν•œ 색상, μ΄ˆκ³ ν•΄μƒλ„, μ΅œμƒμ˜ ν’ˆμ§ˆ, 8k, κ³ ν™”μ§ˆ, 4K",
"image/woman_3.png"],
["검은색 슀포츠 μž¬ν‚·κ³Ό 흰색 μ΄λ„ˆλ₯Ό μž…κ³  λͺ©κ±Έμ΄λ₯Ό ν•œ 여성이 거리에 μ„œ μžˆλŠ”, 배경은 λΉ¨κ°„ 건물과 녹색 λ‚˜λ¬΄, κ³ ν’ˆμ§ˆ, 맀우 μ„ λͺ…, μƒμƒν•œ 색상, μ΄ˆκ³ ν•΄μƒλ„, μ΅œμƒμ˜ ν’ˆμ§ˆ, 8k, κ³ ν™”μ§ˆ, 4K",
"image/woman_4.png"]
]
css = """
footer {
visibility: hidden;
}
"""
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as Kolors:
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
prompt = gr.Textbox(
label="ν”„λ‘¬ν”„νŠΈ",
placeholder="ν”„λ‘¬ν”„νŠΈλ₯Ό μž…λ ₯ν•˜μ„Έμš”",
lines=2
)
with gr.Row():
image = gr.Image(label="이미지", type="pil")
with gr.Accordion("κ³ κΈ‰ μ„€μ •", open=False):
negative_prompt = gr.Textbox(
label="λ„€κ±°ν‹°λΈŒ ν”„λ‘¬ν”„νŠΈ",
placeholder="λ„€κ±°ν‹°λΈŒ ν”„λ‘¬ν”„νŠΈλ₯Ό μž…λ ₯ν•˜μ„Έμš”",
visible=True,
value="nsfw, μ–Όκ΅΄ 그림자, 저해상도, jpeg μ•„ν‹°νŒ©νŠΈ, 흐릿함, 열악함, 검은 μ–Όκ΅΄, λ„€μ˜¨ μ‘°λͺ…"
)
seed = gr.Slider(
label="μ‹œλ“œ",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="μ‹œλ“œ λ¬΄μž‘μœ„ν™”", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="κ°€μ΄λ˜μŠ€ μŠ€μΌ€μΌ",
minimum=0.0,
maximum=10.0,
step=0.1,
value=6.0,
)
num_inference_steps = gr.Slider(
label="μΆ”λ‘  단계 수",
minimum=10,
maximum=50,
step=1,
value=30,
)
with gr.Row():
controlnet_conditioning_scale = gr.Slider(
label="μ»¨νŠΈλ‘€λ„· 컨디셔닝 μŠ€μΌ€μΌ",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.7,
)
control_guidance_end = gr.Slider(
label="컨트둀 κ°€μ΄λ˜μŠ€ μ’…λ£Œ",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.9,
)
with gr.Row():
strength = gr.Slider(
label="강도",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
with gr.Row():
canny_button = gr.Button("μΊλ‹ˆ", elem_id="button")
depth_button = gr.Button("깊이", elem_id="button")
pose_button = gr.Button("포즈", elem_id="button")
with gr.Column(elem_id="col-right"):
result = gr.Gallery(label="κ²°κ³Ό", show_label=False, columns=2)
seed_used = gr.Number(label="μ‚¬μš©λœ μ‹œλ“œ")
with gr.Row():
gr.Examples(
fn = infer_canny,
examples = canny_examples,
inputs = [prompt, image],
outputs = [result, seed_used],
label = "Canny"
)
with gr.Row():
gr.Examples(
fn = infer_depth,
examples = depth_examples,
inputs = [prompt, image],
outputs = [result, seed_used],
label = "Depth"
)
with gr.Row():
gr.Examples(
fn = infer_pose,
examples = pose_examples,
inputs = [prompt, image],
outputs = [result, seed_used],
label = "Pose"
)
canny_button.click(
fn = infer_canny,
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
outputs = [result, seed_used]
)
depth_button.click(
fn = infer_depth,
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
outputs = [result, seed_used]
)
pose_button.click(
fn = infer_pose,
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
outputs = [result, seed_used]
)
Kolors.queue().launch(debug=True)