Spaces:
Runtime error
Runtime error
Delete chatllm.py
Browse files- chatllm.py +0 -160
chatllm.py
DELETED
@@ -1,160 +0,0 @@
|
|
1 |
-
|
2 |
-
import os
|
3 |
-
from typing import Dict, List, Optional, Tuple, Union
|
4 |
-
|
5 |
-
import torch
|
6 |
-
from langchain.llms.base import LLM
|
7 |
-
from langchain.llms.utils import enforce_stop_tokens
|
8 |
-
from transformers import AutoModel, AutoTokenizer
|
9 |
-
|
10 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
11 |
-
|
12 |
-
DEVICE = "cuda"
|
13 |
-
DEVICE_ID = "0"
|
14 |
-
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
15 |
-
|
16 |
-
|
17 |
-
def torch_gc():
|
18 |
-
if torch.cuda.is_available():
|
19 |
-
with torch.cuda.device(CUDA_DEVICE):
|
20 |
-
torch.cuda.empty_cache()
|
21 |
-
torch.cuda.ipc_collect()
|
22 |
-
|
23 |
-
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
|
24 |
-
# transformer.word_embeddings 占用1层
|
25 |
-
# transformer.final_layernorm 和 lm_head 占用1层
|
26 |
-
# transformer.layers 占用 28 层
|
27 |
-
# 总共30层分配到num_gpus张卡上
|
28 |
-
num_trans_layers = 28
|
29 |
-
per_gpu_layers = 30 / num_gpus
|
30 |
-
|
31 |
-
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
|
32 |
-
# windows下 model.device 会被设置成 transformer.word_embeddings.device
|
33 |
-
# linux下 model.device 会被设置成 lm_head.device
|
34 |
-
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
|
35 |
-
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
|
36 |
-
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
|
37 |
-
device_map = {'transformer.word_embeddings': 0,
|
38 |
-
'transformer.final_layernorm': 0, 'lm_head': 0}
|
39 |
-
|
40 |
-
used = 2
|
41 |
-
gpu_target = 0
|
42 |
-
for i in range(num_trans_layers):
|
43 |
-
if used >= per_gpu_layers:
|
44 |
-
gpu_target += 1
|
45 |
-
used = 0
|
46 |
-
assert gpu_target < num_gpus
|
47 |
-
device_map[f'transformer.layers.{i}'] = gpu_target
|
48 |
-
used += 1
|
49 |
-
|
50 |
-
return device_map
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
class ChatLLM(LLM):
|
55 |
-
max_token: int = 10000
|
56 |
-
temperature: float = 0.1
|
57 |
-
top_p = 0.9
|
58 |
-
history = []
|
59 |
-
tokenizer: object = None
|
60 |
-
model: object = None
|
61 |
-
|
62 |
-
def __init__(self):
|
63 |
-
super().__init__()
|
64 |
-
|
65 |
-
@property
|
66 |
-
def _llm_type(self) -> str:
|
67 |
-
return "ChatLLM"
|
68 |
-
|
69 |
-
def _call(self,
|
70 |
-
prompt: str,
|
71 |
-
stop: Optional[List[str]] = None) -> str:
|
72 |
-
|
73 |
-
if self.model == 'Minimax':
|
74 |
-
import requests
|
75 |
-
|
76 |
-
group_id = os.getenv('group_id')
|
77 |
-
api_key = os.getenv('api_key')
|
78 |
-
|
79 |
-
url = f'https://api.minimax.chat/v1/text/chatcompletion?GroupId={group_id}'
|
80 |
-
headers = {
|
81 |
-
"Authorization": f"Bearer {api_key}",
|
82 |
-
"Content-Type": "application/json"
|
83 |
-
}
|
84 |
-
request_body = {
|
85 |
-
"model": "abab5-chat",
|
86 |
-
"tokens_to_generate": 512,
|
87 |
-
'messages': []
|
88 |
-
}
|
89 |
-
|
90 |
-
for i in self.history:
|
91 |
-
h_input = i[0]
|
92 |
-
h_reply = i[1]
|
93 |
-
request_body['messages'].append({
|
94 |
-
"sender_type": "USER",
|
95 |
-
"text": h_input
|
96 |
-
})
|
97 |
-
request_body['messages'].append({"sender_type": "BOT", "text": h_reply})
|
98 |
-
|
99 |
-
request_body['messages'].append({"sender_type": "USER", "text": prompt})
|
100 |
-
resp = requests.post(url, headers=headers, json=request_body)
|
101 |
-
response = resp.json()['reply']
|
102 |
-
# 将当次的ai回复内容加入messages
|
103 |
-
request_body['messages'].append({"sender_type": "BOT", "text": response})
|
104 |
-
self.history.append((prompt, response))
|
105 |
-
|
106 |
-
else:
|
107 |
-
|
108 |
-
response, _ = self.model.chat(
|
109 |
-
self.tokenizer,
|
110 |
-
prompt,
|
111 |
-
history=self.history,
|
112 |
-
max_length=self.max_token,
|
113 |
-
temperature=self.temperature,
|
114 |
-
)
|
115 |
-
torch_gc()
|
116 |
-
if stop is not None:
|
117 |
-
response = enforce_stop_tokens(response, stop)
|
118 |
-
self.history = self.history+[[None, response]]
|
119 |
-
return response
|
120 |
-
|
121 |
-
def load_model(self,
|
122 |
-
model_name_or_path: str = "fb700/chatglm-fitness-RLHF",
|
123 |
-
llm_device=DEVICE,
|
124 |
-
device_map: Optional[Dict[str, int]] = None,
|
125 |
-
**kwargs):
|
126 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
127 |
-
model_name_or_path,
|
128 |
-
trust_remote_code=True
|
129 |
-
)
|
130 |
-
if torch.cuda.is_available() and llm_device.lower().startswith("cuda"):
|
131 |
-
# 根据当前设备GPU数量决定是否进行多卡部署
|
132 |
-
num_gpus = torch.cuda.device_count()
|
133 |
-
if num_gpus < 2 and device_map is None:
|
134 |
-
self.model = (
|
135 |
-
AutoModel.from_pretrained(
|
136 |
-
model_name_or_path,
|
137 |
-
trust_remote_code=True,
|
138 |
-
**kwargs)
|
139 |
-
.half()
|
140 |
-
.quantize(8)
|
141 |
-
.cuda()
|
142 |
-
)
|
143 |
-
else:
|
144 |
-
from accelerate import dispatch_model
|
145 |
-
|
146 |
-
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True, **kwargs).half()
|
147 |
-
# 可传入device_map自定义每张卡的部署情况
|
148 |
-
if device_map is None:
|
149 |
-
device_map = auto_configure_device_map(num_gpus)
|
150 |
-
|
151 |
-
self.model = dispatch_model(model, device_map=device_map)
|
152 |
-
else:
|
153 |
-
self.model = (
|
154 |
-
AutoModel.from_pretrained(
|
155 |
-
model_name_or_path,
|
156 |
-
trust_remote_code=True)
|
157 |
-
.float()
|
158 |
-
.to(llm_device)
|
159 |
-
)
|
160 |
-
self.model = self.model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|