Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,175 +2,82 @@ import os
|
|
2 |
import time
|
3 |
import spaces
|
4 |
import torch
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
-
import gradio as gr
|
7 |
from threading import Thread
|
8 |
-
import
|
9 |
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
MODEL = "AGI-0/Art-v0-3B"
|
12 |
|
13 |
-
TITLE = """<h2>Link to the model: <a href="https://huggingface.co/AGI-0/Art-v0-3B">click here</a></h2>"""
|
14 |
-
|
15 |
-
PLACEHOLDER = """
|
16 |
-
<center>
|
17 |
-
<p>Hi! How can I help you today?</p>
|
18 |
-
</center>
|
19 |
-
"""
|
20 |
-
|
21 |
-
CSS = """
|
22 |
-
.duplicate-button {
|
23 |
-
margin: auto !important;
|
24 |
-
color: white !important;
|
25 |
-
background: black !important;
|
26 |
-
border-radius: 100vh !important;
|
27 |
-
}
|
28 |
-
h3 {
|
29 |
-
text-align: center;
|
30 |
-
}
|
31 |
-
"""
|
32 |
-
|
33 |
class ConversationManager:
|
34 |
def __init__(self):
|
35 |
-
self.
|
36 |
-
self.model_history = [] # For feeding back to model (special tags)
|
37 |
-
self.debug_log = []
|
38 |
|
39 |
-
def
|
40 |
-
"""
|
41 |
-
|
42 |
-
log_entry = f"[{timestamp}] {message}"
|
43 |
-
print(log_entry)
|
44 |
-
self.debug_log.append(log_entry)
|
45 |
-
|
46 |
-
def convert_to_markdown(self, model_text):
|
47 |
-
"""Convert from model format (with special tags) to markdown"""
|
48 |
-
self.log(f"Converting to markdown - Input length: {len(model_text)}")
|
49 |
-
self.log(f"Input text: {model_text[:200]}..." if len(model_text) > 200 else f"Input text: {model_text}")
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
-
("<|
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
]
|
65 |
|
66 |
-
for
|
67 |
-
|
68 |
-
self.log(f"Converting tag: {old} -> {new}")
|
69 |
-
markdown_text = markdown_text.replace(old, new)
|
70 |
-
|
71 |
-
# Clean up any remaining special tags using regex
|
72 |
-
markdown_text = re.sub(r'<\|[^>]+\|>', '', markdown_text)
|
73 |
-
|
74 |
-
# Fix common markdown formatting issues
|
75 |
-
markdown_text = re.sub(r'\n{3,}', '\n\n', markdown_text) # Remove excess newlines
|
76 |
-
markdown_text = markdown_text.strip()
|
77 |
-
|
78 |
-
self.log(f"Markdown conversion complete - Output length: {len(markdown_text)}")
|
79 |
-
self.log(f"Output text: {markdown_text[:200]}..." if len(markdown_text) > 200 else f"Output text: {markdown_text}")
|
80 |
-
|
81 |
-
return markdown_text
|
82 |
-
|
83 |
-
def convert_to_model_format(self, markdown_text):
|
84 |
-
"""Convert from markdown to model format (with special tags)"""
|
85 |
-
self.log(f"Converting to model format - Input length: {len(markdown_text)}")
|
86 |
-
self.log(f"Input text: {markdown_text[:200]}..." if len(markdown_text) > 200 else f"Input text: {markdown_text}")
|
87 |
-
|
88 |
-
model_text = markdown_text
|
89 |
-
|
90 |
-
# Convert markdown to special tags
|
91 |
-
if "<details>" in markdown_text and "</details>" in markdown_text:
|
92 |
-
try:
|
93 |
-
# Extract content between details tags
|
94 |
-
pattern = r'<details><summary>.*?</summary>\s*(.*?)\s*</details>'
|
95 |
-
matches = re.findall(pattern, markdown_text, re.DOTALL)
|
96 |
-
|
97 |
-
for match in matches:
|
98 |
-
original = f"<details><summary>Reasoning</summary>\n\n{match}\n\n</details>"
|
99 |
-
replacement = f"<|start_reasoning|>{match}<|end_reasoning|>"
|
100 |
-
model_text = model_text.replace(original, replacement)
|
101 |
-
self.log(f"Converted details block to reasoning tags")
|
102 |
-
except Exception as e:
|
103 |
-
self.log(f"Warning: Failed to convert details block: {str(e)}")
|
104 |
|
105 |
-
# Clean up
|
106 |
-
|
107 |
-
|
108 |
|
109 |
-
|
110 |
-
self.log(f"Output text: {model_text[:200]}..." if len(model_text) > 200 else f"Output text: {model_text}")
|
111 |
-
|
112 |
-
return model_text
|
113 |
|
114 |
def add_exchange(self, user_message, assistant_response):
|
115 |
-
"""
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
self.
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
def
|
132 |
-
"""
|
133 |
-
self.
|
134 |
-
self.log(f"UI History Length: {len(ui_history)}")
|
135 |
-
|
136 |
-
# Clear current histories
|
137 |
-
self.model_history = []
|
138 |
-
self.user_history = []
|
139 |
-
|
140 |
-
# Rebuild histories from UI
|
141 |
-
for user_msg, markdown_response in ui_history:
|
142 |
-
model_response = self.convert_to_model_format(markdown_response)
|
143 |
-
self.model_history.append((user_msg, model_response))
|
144 |
-
self.user_history.append((user_msg, markdown_response))
|
145 |
-
|
146 |
-
self.log(f"Sync Complete:")
|
147 |
-
self.log(f"- Model History: {len(self.model_history)} exchanges")
|
148 |
-
self.log(f"- User History: {len(self.user_history)} exchanges")
|
149 |
-
|
150 |
-
# Verify sync integrity
|
151 |
-
if len(self.model_history) != len(self.user_history) or len(self.model_history) != len(ui_history):
|
152 |
-
self.log("WARNING: History length mismatch after sync!")
|
153 |
-
|
154 |
-
def get_model_history(self):
|
155 |
-
"""Get history in model format"""
|
156 |
-
self.log(f"\nReturning Model History ({len(self.model_history)} exchanges)")
|
157 |
-
return self.model_history
|
158 |
-
|
159 |
-
def get_user_history(self):
|
160 |
-
"""Get history in markdown format"""
|
161 |
-
self.log(f"\nReturning User History ({len(self.user_history)} exchanges)")
|
162 |
-
return self.user_history
|
163 |
-
|
164 |
-
def get_debug_log(self):
|
165 |
-
"""Get the full debug log"""
|
166 |
-
return "\n".join(self.debug_log)
|
167 |
|
168 |
-
# Initialize
|
169 |
conversation_manager = ConversationManager()
|
|
|
170 |
|
171 |
-
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
172 |
-
|
173 |
-
# Initialize model and tokenizer
|
174 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
175 |
model = AutoModelForCausalLM.from_pretrained(
|
176 |
MODEL,
|
@@ -190,33 +97,24 @@ def stream_chat(
|
|
190 |
top_k: int = 1,
|
191 |
penalty: float = 1.1,
|
192 |
):
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
conversation_manager.log(f'System Prompt: {system_prompt}')
|
197 |
-
conversation_manager.log(f'Parameters: temp={temperature}, max_tokens={max_new_tokens}, top_p={top_p}, top_k={top_k}, penalty={penalty}')
|
198 |
|
199 |
-
#
|
200 |
-
conversation_manager.sync_with_ui_history(history)
|
201 |
-
|
202 |
-
# Get model-formatted history
|
203 |
-
model_history = conversation_manager.get_model_history()
|
204 |
-
|
205 |
-
# Build conversation for model
|
206 |
conversation = []
|
207 |
if system_prompt:
|
208 |
conversation.append({"role": "system", "content": system_prompt})
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
{"role": "user", "content": prompt},
|
213 |
-
{"role": "assistant", "content": answer},
|
214 |
-
])
|
215 |
|
|
|
216 |
conversation.append({"role": "user", "content": message})
|
217 |
|
218 |
-
|
219 |
|
|
|
220 |
input_ids = tokenizer.apply_chat_template(
|
221 |
conversation,
|
222 |
add_generation_prompt=True,
|
@@ -242,8 +140,9 @@ def stream_chat(
|
|
242 |
streamer=streamer,
|
243 |
)
|
244 |
|
|
|
245 |
buffer = ""
|
246 |
-
|
247 |
|
248 |
with torch.no_grad():
|
249 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
@@ -251,27 +150,40 @@ def stream_chat(
|
|
251 |
|
252 |
for new_text in streamer:
|
253 |
buffer += new_text
|
254 |
-
|
255 |
|
256 |
-
# Convert buffer
|
257 |
-
|
258 |
|
259 |
-
if thread.is_alive()
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
conversation_manager.add_exchange(
|
264 |
-
message,
|
265 |
-
original_response # Original for model
|
266 |
-
)
|
267 |
|
268 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
-
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
274 |
-
gr.HTML(
|
275 |
gr.DuplicateButton(
|
276 |
value="Duplicate Space for private use",
|
277 |
elem_classes="duplicate-button"
|
@@ -280,57 +192,14 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
280 |
fn=stream_chat,
|
281 |
chatbot=chatbot,
|
282 |
fill_height=True,
|
283 |
-
additional_inputs_accordion=gr.Accordion(
|
284 |
-
label="⚙️ Parameters",
|
285 |
-
open=False,
|
286 |
-
render=False
|
287 |
-
),
|
288 |
additional_inputs=[
|
289 |
-
gr.Textbox(
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
),
|
294 |
-
gr.Slider(
|
295 |
-
minimum=0,
|
296 |
-
maximum=1,
|
297 |
-
step=0.1,
|
298 |
-
value=0.2,
|
299 |
-
label="Temperature",
|
300 |
-
render=False,
|
301 |
-
),
|
302 |
-
gr.Slider(
|
303 |
-
minimum=128,
|
304 |
-
maximum=8192,
|
305 |
-
step=1,
|
306 |
-
value=4096,
|
307 |
-
label="Max new tokens",
|
308 |
-
render=False,
|
309 |
-
),
|
310 |
-
gr.Slider(
|
311 |
-
minimum=0.0,
|
312 |
-
maximum=1.0,
|
313 |
-
step=0.1,
|
314 |
-
value=1.0,
|
315 |
-
label="top_p",
|
316 |
-
render=False,
|
317 |
-
),
|
318 |
-
gr.Slider(
|
319 |
-
minimum=1,
|
320 |
-
maximum=50,
|
321 |
-
step=1,
|
322 |
-
value=1,
|
323 |
-
label="top_k",
|
324 |
-
render=False,
|
325 |
-
),
|
326 |
-
gr.Slider(
|
327 |
-
minimum=0.0,
|
328 |
-
maximum=2.0,
|
329 |
-
step=0.1,
|
330 |
-
value=1.1,
|
331 |
-
label="Repetition penalty",
|
332 |
-
render=False,
|
333 |
-
),
|
334 |
],
|
335 |
examples=[
|
336 |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
|
|
|
2 |
import time
|
3 |
import spaces
|
4 |
import torch
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
6 |
from threading import Thread
|
7 |
+
import gradio as gr
|
8 |
|
9 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
10 |
MODEL = "AGI-0/Art-v0-3B"
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
class ConversationManager:
|
13 |
def __init__(self):
|
14 |
+
self.model_messages = [] # Stores raw responses with tags
|
|
|
|
|
15 |
|
16 |
+
def format_for_display(self, raw_response):
|
17 |
+
"""Convert model response to user-friendly markdown.
|
18 |
+
Keeps original response intact for model."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# No response? Return empty
|
21 |
+
if not raw_response:
|
22 |
+
return ""
|
23 |
+
|
24 |
+
display_response = raw_response
|
25 |
|
26 |
+
# Handle reasoning sections
|
27 |
+
while "<|start_reasoning|>" in display_response and "<|end_reasoning|>" in display_response:
|
28 |
+
start = display_response.find("<|start_reasoning|>")
|
29 |
+
end = display_response.find("<|end_reasoning|>") + len("<|end_reasoning|>")
|
30 |
+
|
31 |
+
# Extract reasoning content
|
32 |
+
reasoning_block = display_response[start:end]
|
33 |
+
reasoning_content = reasoning_block.replace("<|start_reasoning|>", "").replace("<|end_reasoning|>", "")
|
34 |
|
35 |
+
# Replace with markdown details/summary
|
36 |
+
markdown_block = f"\n<details><summary>View Reasoning</summary>\n\n{reasoning_content}\n\n</details>\n"
|
37 |
+
display_response = display_response[:start] + markdown_block + display_response[end:]
|
38 |
+
|
39 |
+
# Clean up other tags
|
40 |
+
tags_to_remove = [
|
41 |
+
"<|im_start|>",
|
42 |
+
"<|im_end|>",
|
43 |
+
"<|assistant|>",
|
44 |
+
"<|user|>"
|
45 |
]
|
46 |
|
47 |
+
for tag in tags_to_remove:
|
48 |
+
display_response = display_response.replace(tag, "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Clean up any extra whitespace
|
51 |
+
display_response = "\n".join(line.strip() for line in display_response.split("\n"))
|
52 |
+
display_response = "\n".join(filter(None, display_response.split("\n")))
|
53 |
|
54 |
+
return display_response.strip()
|
|
|
|
|
|
|
55 |
|
56 |
def add_exchange(self, user_message, assistant_response):
|
57 |
+
"""Store raw response in model history"""
|
58 |
+
print("\n=== New Exchange ===")
|
59 |
+
print(f"User: {user_message[:100]}{'...' if len(user_message) > 100 else ''}")
|
60 |
+
print(f"Assistant (raw): {assistant_response[:100]}{'...' if len(assistant_response) > 100 else ''}")
|
61 |
+
|
62 |
+
self.model_messages.append({
|
63 |
+
"role": "user",
|
64 |
+
"content": user_message
|
65 |
+
})
|
66 |
+
self.model_messages.append({
|
67 |
+
"role": "assistant",
|
68 |
+
"content": assistant_response
|
69 |
+
})
|
70 |
+
|
71 |
+
print(f"Current history length: {len(self.model_messages)} messages")
|
72 |
+
|
73 |
+
def get_conversation_messages(self):
|
74 |
+
"""Get full conversation history for model"""
|
75 |
+
return self.model_messages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
# Initialize globals
|
78 |
conversation_manager = ConversationManager()
|
79 |
+
device = "cuda"
|
80 |
|
|
|
|
|
|
|
81 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
82 |
model = AutoModelForCausalLM.from_pretrained(
|
83 |
MODEL,
|
|
|
97 |
top_k: int = 1,
|
98 |
penalty: float = 1.1,
|
99 |
):
|
100 |
+
print(f"\n=== New Chat Request ===")
|
101 |
+
print(f"Message: {message}")
|
102 |
+
print(f"History length: {len(history)}")
|
|
|
|
|
103 |
|
104 |
+
# Build conversation history from model's stored messages
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
conversation = []
|
106 |
if system_prompt:
|
107 |
conversation.append({"role": "system", "content": system_prompt})
|
108 |
|
109 |
+
# Add all previous messages
|
110 |
+
conversation.extend(conversation_manager.get_conversation_messages())
|
|
|
|
|
|
|
111 |
|
112 |
+
# Add new message
|
113 |
conversation.append({"role": "user", "content": message})
|
114 |
|
115 |
+
print(f"Sending {len(conversation)} messages to model")
|
116 |
|
117 |
+
# Prepare model input
|
118 |
input_ids = tokenizer.apply_chat_template(
|
119 |
conversation,
|
120 |
add_generation_prompt=True,
|
|
|
140 |
streamer=streamer,
|
141 |
)
|
142 |
|
143 |
+
# Storage for building complete response
|
144 |
buffer = ""
|
145 |
+
model_response = ""
|
146 |
|
147 |
with torch.no_grad():
|
148 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
|
|
150 |
|
151 |
for new_text in streamer:
|
152 |
buffer += new_text
|
153 |
+
model_response += new_text
|
154 |
|
155 |
+
# Convert current buffer for display
|
156 |
+
display_text = conversation_manager.format_for_display(buffer)
|
157 |
|
158 |
+
if not thread.is_alive():
|
159 |
+
print("Generation complete")
|
160 |
+
# Store final response in model history
|
161 |
+
conversation_manager.add_exchange(message, model_response)
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
yield display_text
|
164 |
+
|
165 |
+
# Set up Gradio interface
|
166 |
+
CSS = """
|
167 |
+
.duplicate-button {
|
168 |
+
margin: auto !important;
|
169 |
+
color: white !important;
|
170 |
+
background: black !important;
|
171 |
+
border-radius: 100vh !important;
|
172 |
+
}
|
173 |
+
h3 { text-align: center; }
|
174 |
+
"""
|
175 |
|
176 |
+
chatbot = gr.Chatbot(
|
177 |
+
height=600,
|
178 |
+
placeholder="""
|
179 |
+
<center>
|
180 |
+
<p>Hi! How can I help you today?</p>
|
181 |
+
</center>
|
182 |
+
"""
|
183 |
+
)
|
184 |
|
185 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
186 |
+
gr.HTML("""<h2>Link to the model: <a href="https://huggingface.co/AGI-0/Art-v0-3B">click here</a></h2>""")
|
187 |
gr.DuplicateButton(
|
188 |
value="Duplicate Space for private use",
|
189 |
elem_classes="duplicate-button"
|
|
|
192 |
fn=stream_chat,
|
193 |
chatbot=chatbot,
|
194 |
fill_height=True,
|
195 |
+
additional_inputs_accordion=gr.Accordion("⚙️ Parameters", open=False, render=False),
|
|
|
|
|
|
|
|
|
196 |
additional_inputs=[
|
197 |
+
gr.Textbox(value="", label="System Prompt", render=False),
|
198 |
+
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Temperature", render=False),
|
199 |
+
gr.Slider(minimum=128, maximum=8192, step=1, value=4096, label="Max new tokens", render=False),
|
200 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False),
|
201 |
+
gr.Slider(minimum=1, maximum=50, step=1, value=1, label="top_k", render=False),
|
202 |
+
gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.1, label="Repetition penalty", render=False),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
],
|
204 |
examples=[
|
205 |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
|