Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,71 +2,85 @@ import os
|
|
2 |
import time
|
3 |
import spaces
|
4 |
import torch
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
import gradio as gr
|
7 |
from threading import Thread
|
8 |
|
9 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
10 |
MODEL = "AGI-0/Art-v0-3B"
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
PLACEHOLDER = """
|
15 |
-
<center>
|
16 |
-
<p>Hi! How can I help you today?</p>
|
17 |
-
</center>
|
18 |
-
"""
|
19 |
-
|
20 |
-
CSS = """
|
21 |
-
.duplicate-button {
|
22 |
-
margin: auto !important;
|
23 |
-
color: white !important;
|
24 |
-
background: black !important;
|
25 |
-
border-radius: 100vh !important;
|
26 |
-
}
|
27 |
-
h3 {
|
28 |
-
text-align: center;
|
29 |
-
}
|
30 |
-
"""
|
31 |
-
|
32 |
-
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
33 |
|
34 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
35 |
model = AutoModelForCausalLM.from_pretrained(
|
36 |
-
MODEL,
|
37 |
-
|
38 |
-
device_map="auto")
|
39 |
end_of_sentence = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
@spaces.GPU()
|
42 |
def stream_chat(
|
43 |
-
message: str,
|
44 |
history: list,
|
45 |
-
system_prompt: str
|
46 |
-
temperature: float = 0.2,
|
47 |
-
max_new_tokens: int = 4096,
|
48 |
-
top_p: float = 1.0,
|
49 |
-
top_k: int = 1,
|
50 |
penalty: float = 1.1,
|
51 |
):
|
52 |
-
print(f'
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
conversation = []
|
56 |
-
for prompt, answer in
|
57 |
conversation.extend([
|
58 |
-
{"role": "user", "content": prompt},
|
59 |
{"role": "assistant", "content": answer},
|
60 |
])
|
61 |
-
|
62 |
conversation.append({"role": "user", "content": message})
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
generate_kwargs = dict(
|
69 |
-
input_ids=input_ids,
|
70 |
max_new_tokens=max_new_tokens,
|
71 |
do_sample=False if temperature == 0 else True,
|
72 |
top_p=top_p,
|
@@ -77,43 +91,37 @@ def stream_chat(
|
|
77 |
streamer=streamer,
|
78 |
)
|
79 |
|
|
|
|
|
|
|
80 |
with torch.no_grad():
|
81 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
82 |
thread.start()
|
83 |
-
|
84 |
-
buffer = ""
|
85 |
-
user_buffer = ""
|
86 |
-
found_token = False
|
87 |
-
|
88 |
-
for new_text in streamer:
|
89 |
-
buffer += new_text
|
90 |
-
user_buffer += new_text
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
yield user_buffer
|
100 |
|
101 |
-
history.append((message, buffer)) # Crucial: Append the original buffer
|
102 |
|
|
|
103 |
|
104 |
-
chatbot = gr.Chatbot(height=600, placeholder=
|
105 |
|
106 |
-
|
107 |
-
|
|
|
108 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
109 |
gr.ChatInterface(
|
110 |
fn=stream_chat,
|
111 |
chatbot=chatbot,
|
112 |
fill_height=True,
|
113 |
-
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
114 |
additional_inputs=[
|
115 |
-
|
116 |
-
|
117 |
gr.Slider(minimum=128, maximum=8192, step=1, value=4096, label="Max new tokens", render=False),
|
118 |
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False),
|
119 |
gr.Slider(minimum=1, maximum=50, step=1, value=1, label="top_k", render=False),
|
|
|
2 |
import time
|
3 |
import spaces
|
4 |
import torch
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
import gradio as gr
|
7 |
from threading import Thread
|
8 |
|
9 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
10 |
MODEL = "AGI-0/Art-v0-3B"
|
11 |
|
12 |
+
device = "cuda" # Use "cpu" if no GPU available
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
MODEL, torch_dtype=torch.bfloat16, device_map="auto"
|
17 |
+
)
|
|
|
18 |
end_of_sentence = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
19 |
|
20 |
+
class ConversationManager:
|
21 |
+
def __init__(self):
|
22 |
+
self.user_history = [] # User-facing history with formatting
|
23 |
+
self.model_history = [] # Model-facing history without formatting
|
24 |
+
|
25 |
+
def add_exchange(self, user_message, model_response):
|
26 |
+
formatted_response = self.format_response(model_response)
|
27 |
+
self.model_history.append((user_message, model_response))
|
28 |
+
self.user_history.append((user_message, formatted_response))
|
29 |
+
print(f"\nModel History Updated: {self.model_history}")
|
30 |
+
print(f"\nUser History Updated: {self.user_history}")
|
31 |
+
|
32 |
+
def format_response(self, response):
|
33 |
+
"""Format response for UI while keeping raw text for model."""
|
34 |
+
if "<|end_reasoning|>" in response:
|
35 |
+
parts = response.split("<|end_reasoning|>")
|
36 |
+
reasoning, rest = parts[0], parts[1] if len(parts) > 1 else ""
|
37 |
+
return f"<details><summary>Click to see reasoning</summary>\n\n{reasoning}\n\n</details>\n\n{rest}"
|
38 |
+
return response
|
39 |
+
|
40 |
+
def get_user_history(self):
|
41 |
+
return self.user_history
|
42 |
+
|
43 |
+
def get_model_history(self):
|
44 |
+
return self.model_history
|
45 |
+
|
46 |
+
conversation_manager = ConversationManager()
|
47 |
+
|
48 |
@spaces.GPU()
|
49 |
def stream_chat(
|
50 |
+
message: str,
|
51 |
history: list,
|
52 |
+
system_prompt: str,
|
53 |
+
temperature: float = 0.2,
|
54 |
+
max_new_tokens: int = 4096,
|
55 |
+
top_p: float = 1.0,
|
56 |
+
top_k: int = 1,
|
57 |
penalty: float = 1.1,
|
58 |
):
|
59 |
+
print(f'User Message: {message}')
|
60 |
+
|
61 |
+
model_history = conversation_manager.get_model_history()
|
62 |
+
print(f'Model History: {model_history}')
|
63 |
+
|
64 |
conversation = []
|
65 |
+
for prompt, answer in model_history:
|
66 |
conversation.extend([
|
67 |
+
{"role": "user", "content": prompt},
|
68 |
{"role": "assistant", "content": answer},
|
69 |
])
|
|
|
70 |
conversation.append({"role": "user", "content": message})
|
71 |
|
72 |
+
print(f'Formatted Conversation for Model: {conversation}')
|
|
|
|
|
73 |
|
74 |
+
input_ids = tokenizer.apply_chat_template(
|
75 |
+
conversation, add_generation_prompt=True, return_tensors="pt"
|
76 |
+
).to(model.device)
|
77 |
+
|
78 |
+
streamer = TextIteratorStreamer(
|
79 |
+
tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True
|
80 |
+
)
|
81 |
+
|
82 |
generate_kwargs = dict(
|
83 |
+
input_ids=input_ids,
|
84 |
max_new_tokens=max_new_tokens,
|
85 |
do_sample=False if temperature == 0 else True,
|
86 |
top_p=top_p,
|
|
|
91 |
streamer=streamer,
|
92 |
)
|
93 |
|
94 |
+
buffer = ""
|
95 |
+
original_response = ""
|
96 |
+
|
97 |
with torch.no_grad():
|
98 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
99 |
thread.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
for new_text in streamer:
|
102 |
+
buffer += new_text
|
103 |
+
original_response += new_text
|
104 |
+
print(f'Streaming: {buffer}')
|
105 |
+
formatted_buffer = conversation_manager.format_response(buffer)
|
106 |
+
yield formatted_buffer, history + [[message, formatted_buffer]]
|
|
|
|
|
107 |
|
|
|
108 |
|
109 |
+
conversation_manager.add_exchange(message, original_response)
|
110 |
|
111 |
+
chatbot = gr.Chatbot(height=600, placeholder="<center><p>Hi! How can I help you today?</p></center>")
|
112 |
|
113 |
+
demo = gr.Blocks()
|
114 |
+
with demo:
|
115 |
+
gr.HTML("<h2>Link to the model: <a href='https://huggingface.co/AGI-0/Art-v0-3B'>click here</a></h2>")
|
116 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
117 |
gr.ChatInterface(
|
118 |
fn=stream_chat,
|
119 |
chatbot=chatbot,
|
120 |
fill_height=True,
|
121 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
122 |
additional_inputs=[
|
123 |
+
gr.Textbox(value="", label="System Prompt", render=False),
|
124 |
+
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Temperature", render=False),
|
125 |
gr.Slider(minimum=128, maximum=8192, step=1, value=4096, label="Max new tokens", render=False),
|
126 |
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False),
|
127 |
gr.Slider(minimum=1, maximum=50, step=1, value=1, label="top_k", render=False),
|