Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,37 +10,52 @@ HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
10 |
MODEL = "AGI-0/Art-v0-3B"
|
11 |
|
12 |
TITLE = """<h2>Link to the model: <a href="https://huggingface.co/AGI-0/Art-v0-3B">click here</a></h2>"""
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
""
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
class ConversationManager:
|
33 |
def __init__(self):
|
34 |
self.user_history = [] # For displaying to user (with markdown)
|
35 |
-
self.model_history = [] # For feeding back to model (with
|
36 |
|
37 |
-
def add_exchange(self, user_message,
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
print(f"\nModel History Exchange:")
|
41 |
print(f"User: {user_message}")
|
42 |
-
print(f"Assistant (
|
43 |
-
print(f"Assistant (
|
44 |
|
45 |
def get_model_history(self):
|
46 |
return self.model_history
|
@@ -50,8 +65,8 @@ class ConversationManager:
|
|
50 |
|
51 |
conversation_manager = ConversationManager()
|
52 |
|
53 |
-
|
54 |
-
|
55 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
56 |
model = AutoModelForCausalLM.from_pretrained(
|
57 |
MODEL,
|
@@ -60,15 +75,6 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
60 |
)
|
61 |
end_of_sentence = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
62 |
|
63 |
-
def format_response(response):
|
64 |
-
"""Format the response for user display"""
|
65 |
-
if "<|end_reasoning|>" in response:
|
66 |
-
parts = response.split("<|end_reasoning|>")
|
67 |
-
reasoning = parts[0]
|
68 |
-
rest = parts[1] if len(parts) > 1 else ""
|
69 |
-
return f"<details><summary>Click to see reasoning</summary>\n\n{reasoning}\n\n</details>\n\n{rest}"
|
70 |
-
return response
|
71 |
-
|
72 |
@spaces.GPU()
|
73 |
def stream_chat(
|
74 |
message: str,
|
@@ -83,29 +89,15 @@ def stream_chat(
|
|
83 |
print(f'\nNew Chat Request:')
|
84 |
print(f'Message: {message}')
|
85 |
print(f'History from UI: {history}')
|
86 |
-
print(f'System Prompt: {system_prompt}')
|
87 |
-
print(f'Parameters: temp={temperature}, max_tokens={max_new_tokens}, top_p={top_p}, top_k={top_k}, penalty={penalty}')
|
88 |
|
89 |
-
# Build conversation from UI history
|
90 |
conversation = []
|
91 |
-
for prompt,
|
92 |
-
#
|
93 |
-
|
94 |
-
# Extract content between <details> tags and after </details>
|
95 |
-
parts = answer.split("</details>")
|
96 |
-
if len(parts) > 1:
|
97 |
-
# Get the content after the </details> tag
|
98 |
-
answer_content = parts[1].strip()
|
99 |
-
# Get the reasoning part
|
100 |
-
reasoning = answer.split("<summary>")[1].split("</summary>")[1].strip()
|
101 |
-
# Reconstruct the original format
|
102 |
-
answer = f"{reasoning}<|end_reasoning|>{answer_content}"
|
103 |
-
else:
|
104 |
-
# If no </details> tag found, use the answer as is
|
105 |
-
answer = answer
|
106 |
conversation.extend([
|
107 |
{"role": "user", "content": prompt},
|
108 |
-
{"role": "assistant", "content":
|
109 |
])
|
110 |
|
111 |
conversation.append({"role": "user", "content": message})
|
@@ -138,7 +130,7 @@ def stream_chat(
|
|
138 |
)
|
139 |
|
140 |
buffer = ""
|
141 |
-
|
142 |
|
143 |
with torch.no_grad():
|
144 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
@@ -146,20 +138,14 @@ def stream_chat(
|
|
146 |
|
147 |
for new_text in streamer:
|
148 |
buffer += new_text
|
149 |
-
|
150 |
|
151 |
-
|
|
|
152 |
|
153 |
if thread.is_alive() is False:
|
154 |
-
|
155 |
-
|
156 |
-
print(f'Formatted Response: {formatted_buffer}')
|
157 |
-
|
158 |
-
conversation_manager.add_exchange(
|
159 |
-
message,
|
160 |
-
original_response, # Original for model
|
161 |
-
formatted_buffer # Formatted for user
|
162 |
-
)
|
163 |
|
164 |
yield formatted_buffer
|
165 |
|
@@ -181,51 +167,12 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
181 |
render=False
|
182 |
),
|
183 |
additional_inputs=[
|
184 |
-
gr.Textbox(
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
),
|
189 |
-
gr.Slider(
|
190 |
-
minimum=0,
|
191 |
-
maximum=1,
|
192 |
-
step=0.1,
|
193 |
-
value=0.2,
|
194 |
-
label="Temperature",
|
195 |
-
render=False,
|
196 |
-
),
|
197 |
-
gr.Slider(
|
198 |
-
minimum=128,
|
199 |
-
maximum=8192,
|
200 |
-
step=1,
|
201 |
-
value=4096,
|
202 |
-
label="Max new tokens",
|
203 |
-
render=False,
|
204 |
-
),
|
205 |
-
gr.Slider(
|
206 |
-
minimum=0.0,
|
207 |
-
maximum=1.0,
|
208 |
-
step=0.1,
|
209 |
-
value=1.0,
|
210 |
-
label="top_p",
|
211 |
-
render=False,
|
212 |
-
),
|
213 |
-
gr.Slider(
|
214 |
-
minimum=1,
|
215 |
-
maximum=50,
|
216 |
-
step=1,
|
217 |
-
value=1,
|
218 |
-
label="top_k",
|
219 |
-
render=False,
|
220 |
-
),
|
221 |
-
gr.Slider(
|
222 |
-
minimum=0.0,
|
223 |
-
maximum=2.0,
|
224 |
-
step=0.1,
|
225 |
-
value=1.1,
|
226 |
-
label="Repetition penalty",
|
227 |
-
render=False,
|
228 |
-
),
|
229 |
],
|
230 |
examples=[
|
231 |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
|
|
|
10 |
MODEL = "AGI-0/Art-v0-3B"
|
11 |
|
12 |
TITLE = """<h2>Link to the model: <a href="https://huggingface.co/AGI-0/Art-v0-3B">click here</a></h2>"""
|
13 |
+
PLACEHOLDER = """<center><p>Hi! How can I help you today?</p></center>"""
|
14 |
+
CSS = """.duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; }"""
|
15 |
|
16 |
+
def model_to_user_format(response):
|
17 |
+
"""Convert model format (with reasoning tags) to user format (with markdown)"""
|
18 |
+
if "<|end_reasoning|>" in response:
|
19 |
+
# Split at the end reasoning tag
|
20 |
+
reasoning, content = response.split("<|end_reasoning|>")
|
21 |
+
# Remove start reasoning tag if present
|
22 |
+
reasoning = reasoning.replace("<|start_reasoning|>", "").strip()
|
23 |
+
# Format in markdown
|
24 |
+
return f"<details><summary>Click to see reasoning</summary>\n\n{reasoning}\n\n</details>\n\n{content.strip()}"
|
25 |
+
return response
|
26 |
|
27 |
+
def user_to_model_format(formatted_response):
|
28 |
+
"""Convert user format (with markdown) to model format (with reasoning tags)"""
|
29 |
+
if "<details>" in formatted_response:
|
30 |
+
# Split into parts
|
31 |
+
parts = formatted_response.split("<details>")
|
32 |
+
if len(parts) > 1:
|
33 |
+
# Get the content between summary tags and details closing tag
|
34 |
+
details_content = parts[1].split("</details>")
|
35 |
+
if len(details_content) > 1:
|
36 |
+
reasoning = details_content[0].split("</summary>")[1].strip()
|
37 |
+
main_content = details_content[1].strip()
|
38 |
+
# Reconstruct with proper tags
|
39 |
+
return f"<|start_reasoning|>{reasoning}<|end_reasoning|>{main_content}"
|
40 |
+
return formatted_response
|
41 |
|
42 |
class ConversationManager:
|
43 |
def __init__(self):
|
44 |
self.user_history = [] # For displaying to user (with markdown)
|
45 |
+
self.model_history = [] # For feeding back to model (with tags)
|
46 |
|
47 |
+
def add_exchange(self, user_message, model_response):
|
48 |
+
"""Add a new exchange using model format and convert as needed"""
|
49 |
+
# Store original model format for model history
|
50 |
+
self.model_history.append((user_message, model_response))
|
51 |
+
# Convert to user format for display
|
52 |
+
user_format = model_to_user_format(model_response)
|
53 |
+
self.user_history.append((user_message, user_format))
|
54 |
+
# Log the exchange
|
55 |
print(f"\nModel History Exchange:")
|
56 |
print(f"User: {user_message}")
|
57 |
+
print(f"Assistant (Model Format): {model_response}")
|
58 |
+
print(f"Assistant (User Format): {user_format}")
|
59 |
|
60 |
def get_model_history(self):
|
61 |
return self.model_history
|
|
|
65 |
|
66 |
conversation_manager = ConversationManager()
|
67 |
|
68 |
+
# Model initialization
|
69 |
+
device = "cuda"
|
70 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
71 |
model = AutoModelForCausalLM.from_pretrained(
|
72 |
MODEL,
|
|
|
75 |
)
|
76 |
end_of_sentence = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
@spaces.GPU()
|
79 |
def stream_chat(
|
80 |
message: str,
|
|
|
89 |
print(f'\nNew Chat Request:')
|
90 |
print(f'Message: {message}')
|
91 |
print(f'History from UI: {history}')
|
|
|
|
|
92 |
|
93 |
+
# Build conversation from UI history
|
94 |
conversation = []
|
95 |
+
for prompt, formatted_answer in (history or []):
|
96 |
+
# Convert the UI formatted answer back to model format
|
97 |
+
model_format = user_to_model_format(formatted_answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
conversation.extend([
|
99 |
{"role": "user", "content": prompt},
|
100 |
+
{"role": "assistant", "content": model_format},
|
101 |
])
|
102 |
|
103 |
conversation.append({"role": "user", "content": message})
|
|
|
130 |
)
|
131 |
|
132 |
buffer = ""
|
133 |
+
model_response = ""
|
134 |
|
135 |
with torch.no_grad():
|
136 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
|
|
138 |
|
139 |
for new_text in streamer:
|
140 |
buffer += new_text
|
141 |
+
model_response += new_text
|
142 |
|
143 |
+
# Convert to user format for display
|
144 |
+
formatted_buffer = model_to_user_format(buffer)
|
145 |
|
146 |
if thread.is_alive() is False:
|
147 |
+
# Store both formats
|
148 |
+
conversation_manager.add_exchange(message, model_response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
yield formatted_buffer
|
151 |
|
|
|
167 |
render=False
|
168 |
),
|
169 |
additional_inputs=[
|
170 |
+
gr.Textbox(value="", label="System Prompt", render=False),
|
171 |
+
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Temperature", render=False),
|
172 |
+
gr.Slider(minimum=128, maximum=8192, step=1, value=4096, label="Max new tokens", render=False),
|
173 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False),
|
174 |
+
gr.Slider(minimum=1, maximum=50, step=1, value=1, label="top_k", render=False),
|
175 |
+
gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.1, label="Repetition penalty", render=False),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
],
|
177 |
examples=[
|
178 |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
|