Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -29,44 +29,79 @@ h3 {
|
|
29 |
}
|
30 |
"""
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
33 |
|
34 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
35 |
model = AutoModelForCausalLM.from_pretrained(
|
36 |
MODEL,
|
37 |
torch_dtype=torch.bfloat16,
|
38 |
-
device_map="auto"
|
|
|
39 |
end_of_sentence = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
@spaces.GPU()
|
42 |
def stream_chat(
|
43 |
-
message: str,
|
44 |
history: list,
|
45 |
system_prompt: str,
|
46 |
-
temperature: float = 0.2,
|
47 |
-
max_new_tokens: int = 4096,
|
48 |
-
top_p: float = 1.0,
|
49 |
-
top_k: int = 1,
|
50 |
penalty: float = 1.1,
|
51 |
):
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
conversation = []
|
56 |
-
for prompt, answer in
|
57 |
conversation.extend([
|
58 |
-
{"role": "user", "content": prompt},
|
59 |
{"role": "assistant", "content": answer},
|
60 |
])
|
61 |
-
|
62 |
conversation.append({"role": "user", "content": message})
|
63 |
-
|
64 |
-
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
generate_kwargs = dict(
|
69 |
-
input_ids=input_ids,
|
70 |
max_new_tokens=max_new_tokens,
|
71 |
do_sample=False if temperature == 0 else True,
|
72 |
top_p=top_p,
|
@@ -76,43 +111,50 @@ def stream_chat(
|
|
76 |
eos_token_id=[end_of_sentence],
|
77 |
streamer=streamer,
|
78 |
)
|
79 |
-
|
80 |
-
with torch.no_grad():
|
81 |
-
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
82 |
-
thread.start()
|
83 |
|
84 |
buffer = ""
|
85 |
-
|
86 |
|
87 |
-
|
88 |
-
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
reasoning = parts[0]
|
94 |
-
rest = parts[1] if len(parts) > 1 else ""
|
95 |
|
96 |
-
|
97 |
-
buffer = f"<details><summary>Click to see reasoning</summary>\n\n{reasoning}\n\n</details>\n\n{rest}"
|
98 |
-
found_token = True
|
99 |
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
103 |
|
104 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
105 |
gr.HTML(TITLE)
|
106 |
-
gr.DuplicateButton(
|
|
|
|
|
|
|
107 |
gr.ChatInterface(
|
108 |
fn=stream_chat,
|
109 |
chatbot=chatbot,
|
110 |
fill_height=True,
|
111 |
-
additional_inputs_accordion=gr.Accordion(
|
|
|
|
|
|
|
|
|
112 |
additional_inputs=[
|
113 |
gr.Textbox(
|
114 |
value="",
|
115 |
-
label="",
|
116 |
render=False,
|
117 |
),
|
118 |
gr.Slider(
|
|
|
29 |
}
|
30 |
"""
|
31 |
|
32 |
+
class ConversationManager:
|
33 |
+
def __init__(self):
|
34 |
+
self.user_history = [] # For displaying to user (with markdown)
|
35 |
+
self.model_history = [] # For feeding back to model (with original tags)
|
36 |
+
|
37 |
+
def add_exchange(self, user_message, assistant_response, formatted_response):
|
38 |
+
self.model_history.append((user_message, assistant_response))
|
39 |
+
self.user_history.append((user_message, formatted_response))
|
40 |
+
|
41 |
+
def get_model_history(self):
|
42 |
+
return self.model_history
|
43 |
+
|
44 |
+
def get_user_history(self):
|
45 |
+
return self.user_history
|
46 |
+
|
47 |
+
conversation_manager = ConversationManager()
|
48 |
+
|
49 |
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
50 |
|
51 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
52 |
model = AutoModelForCausalLM.from_pretrained(
|
53 |
MODEL,
|
54 |
torch_dtype=torch.bfloat16,
|
55 |
+
device_map="auto"
|
56 |
+
)
|
57 |
end_of_sentence = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
58 |
|
59 |
+
def format_response(response):
|
60 |
+
"""Format the response for user display"""
|
61 |
+
if "<|end_reasoning|>" in response:
|
62 |
+
parts = response.split("<|end_reasoning|>")
|
63 |
+
reasoning = parts[0]
|
64 |
+
rest = parts[1] if len(parts) > 1 else ""
|
65 |
+
return f"<details><summary>Click to see reasoning</summary>\n\n{reasoning}\n\n</details>\n\n{rest}"
|
66 |
+
return response
|
67 |
+
|
68 |
@spaces.GPU()
|
69 |
def stream_chat(
|
70 |
+
message: str,
|
71 |
history: list,
|
72 |
system_prompt: str,
|
73 |
+
temperature: float = 0.2,
|
74 |
+
max_new_tokens: int = 4096,
|
75 |
+
top_p: float = 1.0,
|
76 |
+
top_k: int = 1,
|
77 |
penalty: float = 1.1,
|
78 |
):
|
79 |
+
model_history = conversation_manager.get_model_history()
|
80 |
+
|
|
|
81 |
conversation = []
|
82 |
+
for prompt, answer in model_history:
|
83 |
conversation.extend([
|
84 |
+
{"role": "user", "content": prompt},
|
85 |
{"role": "assistant", "content": answer},
|
86 |
])
|
87 |
+
|
88 |
conversation.append({"role": "user", "content": message})
|
|
|
|
|
89 |
|
90 |
+
input_ids = tokenizer.apply_chat_template(
|
91 |
+
conversation,
|
92 |
+
add_generation_prompt=True,
|
93 |
+
return_tensors="pt"
|
94 |
+
).to(model.device)
|
95 |
+
|
96 |
+
streamer = TextIteratorStreamer(
|
97 |
+
tokenizer,
|
98 |
+
timeout=60.0,
|
99 |
+
skip_prompt=True,
|
100 |
+
skip_special_tokens=True
|
101 |
+
)
|
102 |
|
103 |
generate_kwargs = dict(
|
104 |
+
input_ids=input_ids,
|
105 |
max_new_tokens=max_new_tokens,
|
106 |
do_sample=False if temperature == 0 else True,
|
107 |
top_p=top_p,
|
|
|
111 |
eos_token_id=[end_of_sentence],
|
112 |
streamer=streamer,
|
113 |
)
|
|
|
|
|
|
|
|
|
114 |
|
115 |
buffer = ""
|
116 |
+
original_response = ""
|
117 |
|
118 |
+
with torch.no_grad():
|
119 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
120 |
+
thread.start()
|
121 |
|
122 |
+
for new_text in streamer:
|
123 |
+
buffer += new_text
|
124 |
+
original_response += new_text
|
|
|
|
|
125 |
|
126 |
+
formatted_buffer = format_response(buffer)
|
|
|
|
|
127 |
|
128 |
+
if thread.is_alive() is False:
|
129 |
+
conversation_manager.add_exchange(
|
130 |
+
message,
|
131 |
+
original_response, # Original for model
|
132 |
+
formatted_buffer # Formatted for user
|
133 |
+
)
|
134 |
+
|
135 |
+
yield formatted_buffer
|
136 |
|
137 |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
138 |
|
139 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
140 |
gr.HTML(TITLE)
|
141 |
+
gr.DuplicateButton(
|
142 |
+
value="Duplicate Space for private use",
|
143 |
+
elem_classes="duplicate-button"
|
144 |
+
)
|
145 |
gr.ChatInterface(
|
146 |
fn=stream_chat,
|
147 |
chatbot=chatbot,
|
148 |
fill_height=True,
|
149 |
+
additional_inputs_accordion=gr.Accordion(
|
150 |
+
label="⚙️ Parameters",
|
151 |
+
open=False,
|
152 |
+
render=False
|
153 |
+
),
|
154 |
additional_inputs=[
|
155 |
gr.Textbox(
|
156 |
value="",
|
157 |
+
label="System Prompt",
|
158 |
render=False,
|
159 |
),
|
160 |
gr.Slider(
|