g30rv17ys commited on
Commit
2b471b1
·
1 Parent(s): 3bc3e74

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -15
app.py CHANGED
@@ -16,27 +16,31 @@ class_map = checkpoint_and_model["class_map"]
16
  img_size = checkpoint_and_model["img_size"]
17
  valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()])
18
 
19
- examples = [['1.jpg'],['2.jpg'],['3.jpg']]
 
 
 
 
 
20
 
21
  def show_preds(input_image):
22
  img = PIL.Image.fromarray(input_image, "RGB")
23
- pred_dict = model_type.end2end_detect(img, valid_tfms, model, class_map=class_map, detection_threshold=0.5,
24
- display_label=False, display_bbox=True, return_img=True,
25
- font_size=16, label_color="#FF59D6")
26
-
27
- return pred_dict["img"], len(pred_dict["detection"]["bboxes"])
28
-
29
- #new
 
 
30
 
31
  gr_interface = gr.Interface(
32
  fn=show_preds,
33
  inputs=["image"],
34
- outputs=[gr.outputs.Image(type="pil", label="RetinaNet Inference"), gr.outputs.Textbox(type="number", label="Microalgae Count")],
35
- title="Microalgae Detector with RetinaNet",
36
- description="This RetinaNet model counts microalgaes on a given image. Upload an image or click an example image below to use.",
37
- article="<p style='text-align: center'><a href='https://dicksonneoh.com/portfolio/how_to_deploy_od_models_on_android_with_flutter/' target='_blank'>Blog post</a></p>",
38
  examples=examples,
39
- theme="dark-grass",
40
- enable_queue=True
41
  )
42
- gr_interface.launch()
 
16
  img_size = checkpoint_and_model["img_size"]
17
  valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()])
18
 
19
+ # Populate examples in Gradio interface
20
+ examples = [
21
+ ['./1.jpg'],
22
+ ['./2.jpg'],
23
+ ['./3.jpg']
24
+ ]
25
 
26
  def show_preds(input_image):
27
  img = PIL.Image.fromarray(input_image, "RGB")
28
+ pred_dict = model_type.end2end_detect(img, valid_tfms, model,
29
+ class_map=class_map,
30
+ detection_threshold=0.5,
31
+ display_label=True,
32
+ display_bbox=True,
33
+ return_img=True,
34
+ font_size=35,
35
+ label_color="#FF59D6")
36
+ return pred_dict["img"]
37
 
38
  gr_interface = gr.Interface(
39
  fn=show_preds,
40
  inputs=["image"],
41
+ outputs=[gr.outputs.Image(type="pil", label="VFNet Inference")],
42
+ title="Fridge Object Detector",
43
+ description="A VFNet model that detects common objects found in fridge. Upload an image or click an example image below to use.",
 
44
  examples=examples,
 
 
45
  )
46
+ gr_interface.launch(inline=False, share=False, debug=True)