Spaces:
Runtime error
Runtime error
Define stream_object_detection
Browse files
app.py
CHANGED
@@ -1,3 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
with gr.Blocks() as app:
|
@@ -20,11 +94,9 @@ with gr.Blocks() as app:
|
|
20 |
with gr.Column():
|
21 |
output_video = gr.Video(label="Processed Video", streaming=True, autoplay=True)
|
22 |
|
23 |
-
video.
|
24 |
fn=stream_object_detection,
|
25 |
inputs=[video, conf_threshold],
|
26 |
outputs=[output_video],
|
27 |
)
|
28 |
|
29 |
-
|
30 |
-
# This is from: https://www.gradio.app/guides/object-detection-from-video
|
|
|
1 |
+
import spaces
|
2 |
+
import cv2
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import time
|
6 |
+
import numpy as np
|
7 |
+
import uuid
|
8 |
+
|
9 |
+
from draw_boxes import draw_bounding_boxes
|
10 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection # Added import
|
11 |
+
|
12 |
+
SUBSAMPLE = 2
|
13 |
+
|
14 |
+
# Initialize image processor and model
|
15 |
+
image_processor = AutoImageProcessor.from_pretrained("PekingU/rtdetr_r101vd_coco_o365")
|
16 |
+
model = AutoModelForObjectDetection.from_pretrained("PekingU/rtdetr_r101vd_coco_o365").to("cuda")
|
17 |
+
|
18 |
+
@spaces.GPU
|
19 |
+
def stream_object_detection(video, conf_threshold):
|
20 |
+
cap = cv2.VideoCapture(video)
|
21 |
+
|
22 |
+
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore
|
23 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
24 |
+
|
25 |
+
desired_fps = fps // SUBSAMPLE
|
26 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
|
27 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
|
28 |
+
|
29 |
+
iterating, frame = cap.read()
|
30 |
+
|
31 |
+
n_frames = 0
|
32 |
+
|
33 |
+
|
34 |
+
output_video_name = f"output_{uuid.uuid4()}.mp4"
|
35 |
+
|
36 |
+
# Output Video
|
37 |
+
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore
|
38 |
+
batch = []
|
39 |
+
|
40 |
+
while iterating:
|
41 |
+
frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5)
|
42 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
43 |
+
if n_frames % SUBSAMPLE == 0:
|
44 |
+
batch.append(frame)
|
45 |
+
if len(batch) == 2 * desired_fps:
|
46 |
+
inputs = image_processor(images=batch, return_tensors="pt").to("cuda")
|
47 |
+
|
48 |
+
with torch.no_grad():
|
49 |
+
outputs = model(**inputs)
|
50 |
+
|
51 |
+
boxes = image_processor.post_process_object_detection(
|
52 |
+
outputs,
|
53 |
+
target_sizes=torch.tensor([(height, width)] * len(batch)),
|
54 |
+
threshold=conf_threshold)
|
55 |
+
|
56 |
+
for i, (array, box) in enumerate(zip(batch, boxes)):
|
57 |
+
pil_image = draw_bounding_boxes(Image.fromarray(array), box, model, conf_threshold)
|
58 |
+
frame = np.array(pil_image)
|
59 |
+
# Convert RGB to BGR
|
60 |
+
frame = frame[:, :, ::-1].copy()
|
61 |
+
output_video.write(frame)
|
62 |
+
|
63 |
+
batch = []
|
64 |
+
output_video.release()
|
65 |
+
yield output_video_name
|
66 |
+
output_video_name = f"output_{uuid.uuid4()}.mp4"
|
67 |
+
output_video = cv2.VideoWriter(output_video_name, video_codec, desired_fps, (width, height)) # type: ignore
|
68 |
+
|
69 |
+
iterating, frame = cap.read()
|
70 |
+
n_frames += 1
|
71 |
+
|
72 |
+
cap.release()
|
73 |
+
output_video.release()
|
74 |
+
|
75 |
import gradio as gr
|
76 |
|
77 |
with gr.Blocks() as app:
|
|
|
94 |
with gr.Column():
|
95 |
output_video = gr.Video(label="Processed Video", streaming=True, autoplay=True)
|
96 |
|
97 |
+
video.change(
|
98 |
fn=stream_object_detection,
|
99 |
inputs=[video, conf_threshold],
|
100 |
outputs=[output_video],
|
101 |
)
|
102 |
|
|
|
|