File size: 8,177 Bytes
17ff0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Natural Instruction V2 Dataset."""


import json
import os
import random

import datasets

logger = datasets.logging.get_logger(__name__)

_CITATION = """
@article{wang2022benchmarking,
  title={Benchmarking Generalization via In-Context Instructions on 1,600+ Language Tasks},
  author={Wang, Yizhong and Mishra, Swaroop and Alipoormolabashi, Pegah and Kordi, Yeganeh and others},
  journal={arXiv preprint arXiv:2204.07705},
  year={2022}
}
"""

_DESCRIPTION = """
Natural-Instructions v2 is a benchmark of 1,600+ diverse language tasks and their expert-written instructions.
It covers 70+ distinct task types, such as tagging, in-filling, and rewriting.
These tasks are collected with contributions of NLP practitioners in the community and
through an iterative peer review process to ensure their quality.
"""

_URL = "https://instructions.apps.allenai.org/"
_VERSION = "2.6"
_RELEASE_URL = (
    f"https://api.github.com/repos/allenai/natural-instructions/zipball/v{_VERSION}"
)


class NIConfig(datasets.BuilderConfig):
    def __init__(
        self,
        split_subdir="splits/default/",
        task_subdir="tasks/",
        max_num_instances_per_task: int = 100,
        max_num_instances_per_eval_task: int = 100,
        seed=42,
        *args,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        self.split_subdir: str = split_subdir
        self.task_subdir: str = task_subdir
        self.seed: int = seed
        self.max_num_instances_per_task: int = max_num_instances_per_task
        self.max_num_instances_per_eval_task: int = (
            max_num_instances_per_eval_task or max_num_instances_per_task
        )


class NaturalInstructions(datasets.GeneratorBasedBuilder):
    """NaturalInstructions Dataset."""

    VERSION = datasets.Version(_VERSION + ".0")
    BUILDER_CONFIG_CLASS = NIConfig
    BUILDER_CONFIGS = [
        NIConfig(
            name="default",
            description="Default config for NaturalInstructions V2",
        )
    ]
    DEFAULT_CONFIG_NAME = "default"

    def _info(self):
        return datasets.DatasetInfo(
            version=self.VERSION,
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),  # instance_id
                    "Task": datasets.Value("string"),
                    "Contributors": datasets.Value("string"),
                    "Source": [datasets.Value("string")],
                    "URL": [datasets.Value("string")],
                    "Categories": [datasets.Value("string")],
                    "Reasoning": [datasets.Value("string")],
                    "Definition": [datasets.Value("string")],
                    "Positive Examples": [
                        {
                            "input": datasets.Value("string"),
                            "output": datasets.Value("string"),
                            "explanation": datasets.Value("string"),
                        }
                    ],
                    "Negative Examples": [
                        {
                            "input": datasets.Value("string"),
                            "output": datasets.Value("string"),
                            "explanation": datasets.Value("string"),
                        }
                    ],
                    "Input_language": [datasets.Value("string")],
                    "Output_language": [datasets.Value("string")],
                    "Instruction_language": [datasets.Value("string")],
                    "Domains": [datasets.Value("string")],
                    "Instance": {
                        "id": datasets.Value("string"),
                        "input": datasets.Value("string"),
                        "output": [datasets.Value("string")],
                    },
                }
            ),
            license="",
            homepage=_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        if self.config.data_dir is None:
            dl_path = dl_manager.download_and_extract(_RELEASE_URL)
            self.config.data_dir = os.path.join(
                dl_path, os.listdir(dl_path)[0]
            )  # get the extracted directory
        split_dir = os.path.join(self.config.data_dir, self.config.split_subdir)
        task_dir = os.path.join(self.config.data_dir, self.config.task_subdir)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "path": os.path.join(split_dir, "train_tasks.txt"),
                    "task_dir": task_dir,
                    "max_num_instances_per_task": self.config.max_num_instances_per_task,
                    "split": datasets.Split.TRAIN,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "path": os.path.join(split_dir, "test_tasks.txt"),
                    "task_dir": task_dir,
                    "max_num_instances_per_task": self.config.max_num_instances_per_eval_task,
                    "split": datasets.Split.TEST,
                },
            ),
        ]

    def _generate_examples(
        self, path=None, task_dir=None, max_num_instances_per_task=None, split=None
    ):
        """Yields examples."""
        logger.info(f"Reading {split} tasks from {path}")
        with open(path, encoding="utf-8") as split_f:
            for line in split_f:
                task_name = line.strip()
                task_path = os.path.join(task_dir, task_name + ".json")
                with open(task_path, encoding="utf-8") as task_f:
                    s = task_f.read()
                    task_data = json.loads(s)
                    # rename task name to task_num + source + category
                    task_name = (
                        task_name.split("_")[0]
                        + "_"
                        + "_".join(task_data["Source"]).lower()
                        + "_"
                        + "_".join(task_data["Categories"][0].lower().split())
                    )
                    task_data["Task"] = task_name
                    if "Instruction Source" in task_data:
                        task_data.pop("Instruction Source")
                    all_instances = task_data.pop("Instances")
                    if split == datasets.Split.TEST:
                        # for testing tasks, 100 instances are selected for efficient
                        # evaluation and they are label-balanced.
                        # we put them in the first for reproducibility.
                        # so, we use them here
                        instances = all_instances[:100]
                    else:
                        instances = all_instances
                    if (
                        max_num_instances_per_task is not None
                        and max_num_instances_per_task >= 0
                    ):
                        random.Random(self.config.seed).shuffle(instances)
                        instances = instances[:max_num_instances_per_task]
                    for idx, instance in enumerate(instances):
                        example = task_data.copy()
                        example["id"] = instance["id"]
                        example["Instance"] = instance
                        yield f"{task_name}_{idx}", example