Spaces:
Configuration error
Configuration error
Updated the ReadMe file (#4)
Browse files- Updated the ReadMe file (8e96e9299197e1698cd81562640c6a6ba52296c5)
Co-authored-by: Bismark Bantar <[email protected]>
README.md
CHANGED
@@ -1,14 +1,153 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# WhatsApp Chat Analyzer
|
2 |
+
|
3 |
+
A comprehensive tool for analyzing WhatsApp chat exports with sentiment analysis capabilities.
|
4 |
+
|
5 |
+
## Table of Contents
|
6 |
+
1. [System Overview](#system-overview)
|
7 |
+
2. [Architecture](#architecture)
|
8 |
+
3. [Components](#components)
|
9 |
+
4. [Data Flow](#data-flow)
|
10 |
+
5. [Installation](#installation)
|
11 |
+
6. [Usage](#usage)
|
12 |
+
7. [Analysis Capabilities](#analysis-capabilities)
|
13 |
+
8.
|
14 |
+
|
15 |
+
## System Overview
|
16 |
+
|
17 |
+
The WhatsApp Chat Analyzer is a Python-based application that processes exported WhatsApp chat data to provide:
|
18 |
+
- Message statistics and metrics
|
19 |
+
- Temporal activity patterns
|
20 |
+
- User engagement analysis
|
21 |
+
- Content analysis (words, emojis, links)
|
22 |
+
- Sentiment analysis capabilities
|
23 |
+
- Topics analysis in the group chats
|
24 |
+
|
25 |
+
Built with Streamlit for the web interface, it offers an interactive way to explore chat dynamics and analyze sentiment.
|
26 |
+
|
27 |
+
## Architecture
|
28 |
+
|
29 |
+
The system follows a modular architecture with clear separation of concerns:
|
30 |
+
|
31 |
+
```
|
32 |
+
Raw WhatsApp Chat → Preprocessing → Analysis → Visualization
|
33 |
+
```
|
34 |
+
|
35 |
+
Key architectural decisions:
|
36 |
+
- **Modular Design**: Components are separated by functionality
|
37 |
+
- **Pipeline Processing**: Data flows through discrete processing stages
|
38 |
+
- **Interactive UI**: Streamlit enables real-time exploration
|
39 |
+
|
40 |
+
## Components
|
41 |
+
|
42 |
+
### 1. App Module (`app.py`)
|
43 |
+
- **Responsibility**: User interface and visualization
|
44 |
+
- **Key Features**:
|
45 |
+
- File upload handling
|
46 |
+
- User selection interface
|
47 |
+
- Visualization rendering
|
48 |
+
- Interactive controls
|
49 |
+
|
50 |
+
### 2. Preprocessor (`preprocessor.py`)
|
51 |
+
- **Responsibility**: Data cleaning and structuring
|
52 |
+
- **Key Features**:
|
53 |
+
- Handles multiple date/time formats
|
54 |
+
- Extracts messages and metadata
|
55 |
+
- Filters system messages
|
56 |
+
- Creates structured DataFrame
|
57 |
+
|
58 |
+
### 3. Helper Module (`helper.py`)
|
59 |
+
- **Responsibility**: Analytical computations
|
60 |
+
- **Key Features**:
|
61 |
+
- Statistical metrics
|
62 |
+
- Temporal analysis
|
63 |
+
- Content analysis
|
64 |
+
- Visualization data preparation
|
65 |
+
|
66 |
+
### 4. Notebook (`whatsAppAnalyzer.ipynb`)
|
67 |
+
- **Responsibility**: Prototyping and experimentation
|
68 |
+
- **Key Features**:
|
69 |
+
- Initial pattern development
|
70 |
+
- Data exploration
|
71 |
+
- Algorithm testing
|
72 |
+
|
73 |
+
## Data Flow
|
74 |
+
|
75 |
+
1. **Input**: User uploads WhatsApp chat export (.txt)
|
76 |
+
2. **Preprocessing**:
|
77 |
+
- Raw text is parsed using regex patterns
|
78 |
+
- Messages are categorized and timestamped
|
79 |
+
- Structured DataFrame is created
|
80 |
+
3. **Analysis**:
|
81 |
+
- Selected metrics are computed
|
82 |
+
- Temporal patterns are identified
|
83 |
+
- Content features are extracted
|
84 |
+
4. **Visualization**:
|
85 |
+
- Results are displayed in interactive charts
|
86 |
+
- User can explore different views
|
87 |
+
|
88 |
+
## Installation
|
89 |
+
|
90 |
+
### Prerequisites
|
91 |
+
- Python 3.8+
|
92 |
+
- pip package manager
|
93 |
+
|
94 |
+
### Steps
|
95 |
+
1. Clone the repository:
|
96 |
+
```bash
|
97 |
+
git clone [repository-url]
|
98 |
+
cd whatsapp-analyzer
|
99 |
+
```
|
100 |
+
|
101 |
+
2. Install dependencies:
|
102 |
+
```bash
|
103 |
+
pip install -r requirements.txt
|
104 |
+
```
|
105 |
+
|
106 |
+
3. Run the application:
|
107 |
+
```bash
|
108 |
+
streamlit run srcs/app.py
|
109 |
+
```
|
110 |
+
|
111 |
+
## Usage
|
112 |
+
|
113 |
+
1. Launch the application
|
114 |
+
2. Upload a WhatsApp chat export file
|
115 |
+
3. Select a user or "Overall" for group analysis
|
116 |
+
4. Explore the various analysis tabs:
|
117 |
+
- Statistics
|
118 |
+
- Timelines
|
119 |
+
- Activity Maps
|
120 |
+
- Word Clouds
|
121 |
+
- Emoji Analysis
|
122 |
+
|
123 |
+
## Analysis Capabilities
|
124 |
+
|
125 |
+
### 1. Basic Statistics
|
126 |
+
- Message counts
|
127 |
+
- Word counts
|
128 |
+
- Media shared
|
129 |
+
- Links shared
|
130 |
+
|
131 |
+
### 2. Temporal Analysis
|
132 |
+
- Daily activity patterns
|
133 |
+
- Monthly trends
|
134 |
+
- Hourly distributions
|
135 |
+
|
136 |
+
### 3. User Engagement
|
137 |
+
- Most active users
|
138 |
+
- User participation rates
|
139 |
+
- Message distribution
|
140 |
+
|
141 |
+
### 4. Content Analysis
|
142 |
+
- Most common words
|
143 |
+
- Emoji usage
|
144 |
+
|
145 |
+
### 5. Sentiment Analysis
|
146 |
+
- Message sentiment scoring
|
147 |
+
- Sentiment trends over time
|
148 |
+
- User sentiment comparison
|
149 |
+
## 5. Topics Analysis
|
150 |
+
- Topic modeling
|
151 |
+
- Common topics over time
|
152 |
+
- User interests
|
153 |
+
|