Jie Hu
commited on
Commit
·
5412668
1
Parent(s):
9c25e98
init project
Browse files- .DS_Store +0 -0
- app.py +3 -6
- modules/.DS_Store +0 -0
- modules/dust3r/cloud_opt/base_opt.py +0 -3
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
app.py
CHANGED
@@ -39,7 +39,8 @@ import torchvision.transforms as tvf
|
|
39 |
|
40 |
|
41 |
silent = False
|
42 |
-
|
|
|
43 |
|
44 |
|
45 |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
@@ -244,7 +245,6 @@ def slerp_multiple(vectors, t_values):
|
|
244 |
|
245 |
# @torch.no_grad
|
246 |
# def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform):
|
247 |
-
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
248 |
|
249 |
# sam_mask=[]
|
250 |
# img_area = original_size[0] * original_size[1]
|
@@ -444,8 +444,6 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
444 |
"""
|
445 |
if len(filelist) < 2:
|
446 |
raise gradio.Error("Please input at least 2 images.")
|
447 |
-
|
448 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
449 |
|
450 |
images = Images(filelist=filelist, device=device)
|
451 |
|
@@ -499,6 +497,7 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
499 |
|
500 |
outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
|
501 |
clean_depth, transparent_cams, cam_size)
|
|
|
502 |
# also return rgb, depth and confidence imgs
|
503 |
# depth is normalized with the max value for all images
|
504 |
# we apply the jet colormap on the confidence maps
|
@@ -524,8 +523,6 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
|
|
524 |
# def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
|
525 |
# mask_sky, clean_depth, transparent_cams, cam_size):
|
526 |
|
527 |
-
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
528 |
-
|
529 |
# texts = [text]
|
530 |
# inputs = pe3r.siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
|
531 |
# inputs = {key: value.to(device) for key, value in inputs.items()}
|
|
|
39 |
|
40 |
|
41 |
silent = False
|
42 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
43 |
+
pe3r = Models(device)
|
44 |
|
45 |
|
46 |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
|
|
245 |
|
246 |
# @torch.no_grad
|
247 |
# def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform):
|
|
|
248 |
|
249 |
# sam_mask=[]
|
250 |
# img_area = original_size[0] * original_size[1]
|
|
|
444 |
"""
|
445 |
if len(filelist) < 2:
|
446 |
raise gradio.Error("Please input at least 2 images.")
|
|
|
|
|
447 |
|
448 |
images = Images(filelist=filelist, device=device)
|
449 |
|
|
|
497 |
|
498 |
outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
|
499 |
clean_depth, transparent_cams, cam_size)
|
500 |
+
torch.cuda.empty_cache()
|
501 |
# also return rgb, depth and confidence imgs
|
502 |
# depth is normalized with the max value for all images
|
503 |
# we apply the jet colormap on the confidence maps
|
|
|
523 |
# def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
|
524 |
# mask_sky, clean_depth, transparent_cams, cam_size):
|
525 |
|
|
|
|
|
526 |
# texts = [text]
|
527 |
# inputs = pe3r.siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
|
528 |
# inputs = {key: value.to(device) for key, value in inputs.items()}
|
modules/.DS_Store
CHANGED
Binary files a/modules/.DS_Store and b/modules/.DS_Store differ
|
|
modules/dust3r/cloud_opt/base_opt.py
CHANGED
@@ -55,9 +55,6 @@ class BasePCOptimizer (nn.Module):
|
|
55 |
iterationsCount=None,
|
56 |
verbose=True):
|
57 |
super().__init__()
|
58 |
-
|
59 |
-
self.device = device
|
60 |
-
|
61 |
if not isinstance(view1['idx'], list):
|
62 |
view1['idx'] = view1['idx'].tolist()
|
63 |
if not isinstance(view2['idx'], list):
|
|
|
55 |
iterationsCount=None,
|
56 |
verbose=True):
|
57 |
super().__init__()
|
|
|
|
|
|
|
58 |
if not isinstance(view1['idx'], list):
|
59 |
view1['idx'] = view1['idx'].tolist()
|
60 |
if not isinstance(view2['idx'], list):
|