Jie Hu commited on
Commit
5412668
·
1 Parent(s): 9c25e98

init project

Browse files
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py CHANGED
@@ -39,7 +39,8 @@ import torchvision.transforms as tvf
39
 
40
 
41
  silent = False
42
- pe3r = Models('cuda' if torch.cuda.is_available() else 'cpu')
 
43
 
44
 
45
  def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
@@ -244,7 +245,6 @@ def slerp_multiple(vectors, t_values):
244
 
245
  # @torch.no_grad
246
  # def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform):
247
- # device = 'cuda' if torch.cuda.is_available() else 'cpu'
248
 
249
  # sam_mask=[]
250
  # img_area = original_size[0] * original_size[1]
@@ -444,8 +444,6 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
444
  """
445
  if len(filelist) < 2:
446
  raise gradio.Error("Please input at least 2 images.")
447
-
448
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
449
 
450
  images = Images(filelist=filelist, device=device)
451
 
@@ -499,6 +497,7 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
499
 
500
  outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
501
  clean_depth, transparent_cams, cam_size)
 
502
  # also return rgb, depth and confidence imgs
503
  # depth is normalized with the max value for all images
504
  # we apply the jet colormap on the confidence maps
@@ -524,8 +523,6 @@ def get_reconstructed_scene(outdir, filelist, schedule, niter, min_conf_thr,
524
  # def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
525
  # mask_sky, clean_depth, transparent_cams, cam_size):
526
 
527
- # device = 'cuda' if torch.cuda.is_available() else 'cpu'
528
-
529
  # texts = [text]
530
  # inputs = pe3r.siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
531
  # inputs = {key: value.to(device) for key, value in inputs.items()}
 
39
 
40
 
41
  silent = False
42
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
43
+ pe3r = Models(device)
44
 
45
 
46
  def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
 
245
 
246
  # @torch.no_grad
247
  # def get_mask_from_img_sam1(mobilesamv2, yolov8, sam1_image, yolov8_image, original_size, input_size, transform):
 
248
 
249
  # sam_mask=[]
250
  # img_area = original_size[0] * original_size[1]
 
444
  """
445
  if len(filelist) < 2:
446
  raise gradio.Error("Please input at least 2 images.")
 
 
447
 
448
  images = Images(filelist=filelist, device=device)
449
 
 
497
 
498
  outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
499
  clean_depth, transparent_cams, cam_size)
500
+ torch.cuda.empty_cache()
501
  # also return rgb, depth and confidence imgs
502
  # depth is normalized with the max value for all images
503
  # we apply the jet colormap on the confidence maps
 
523
  # def get_3D_object_from_scene(outdir, text, threshold, scene, min_conf_thr, as_pointcloud,
524
  # mask_sky, clean_depth, transparent_cams, cam_size):
525
 
 
 
526
  # texts = [text]
527
  # inputs = pe3r.siglip_tokenizer(text=texts, padding="max_length", return_tensors="pt")
528
  # inputs = {key: value.to(device) for key, value in inputs.items()}
modules/.DS_Store CHANGED
Binary files a/modules/.DS_Store and b/modules/.DS_Store differ
 
modules/dust3r/cloud_opt/base_opt.py CHANGED
@@ -55,9 +55,6 @@ class BasePCOptimizer (nn.Module):
55
  iterationsCount=None,
56
  verbose=True):
57
  super().__init__()
58
-
59
- self.device = device
60
-
61
  if not isinstance(view1['idx'], list):
62
  view1['idx'] = view1['idx'].tolist()
63
  if not isinstance(view2['idx'], list):
 
55
  iterationsCount=None,
56
  verbose=True):
57
  super().__init__()
 
 
 
58
  if not isinstance(view1['idx'], list):
59
  view1['idx'] = view1['idx'].tolist()
60
  if not isinstance(view2['idx'], list):