Jie Hu commited on
Commit
b9e0a6a
·
1 Parent(s): 8e3fa18

init project

Browse files
Files changed (1) hide show
  1. modules/pe3r/images.py +27 -27
modules/pe3r/images.py CHANGED
@@ -53,32 +53,32 @@ class Images:
53
  self.np_images_size.append(np_shape)
54
 
55
 
56
- # -- sam2 images --
57
- img_mean = torch.tensor((0.485, 0.456, 0.406))[:, None, None]
58
- img_std = torch.tensor((0.229, 0.224, 0.225))[:, None, None]
59
- self.sam2_images = []
60
- # TODO
61
- self.sam2_video_size = (self.pil_images_size[0][1], self.pil_images_size[0][0])
62
- self.sam2_input_size = 512
63
- for pil_image in self.pil_images:
64
- np_image = np.array(pil_image.resize((self.sam2_input_size, self.sam2_input_size)))
65
- np_image = np_image / 255.0
66
- sam2_image = torch.from_numpy(np_image).permute(2, 0, 1)
67
- self.sam2_images.append(sam2_image)
68
- self.sam2_images = torch.stack(self.sam2_images)
69
- self.sam2_images -= img_mean
70
- self.sam2_images /= img_std
71
- self.sam2_images.to(device)
72
 
73
- # -- sam1 images --
74
- self.sam1_images = []
75
- self.sam1_images_size = []
76
- self.sam1_input_size = 1024
77
- self.sam1_transform = ResizeLongestSide(self.sam1_input_size)
78
- for np_image in self.np_images:
79
- sam1_image = self.sam1_transform.apply_image(np_image)
80
- sam1_image_torch = torch.as_tensor(sam1_image, device=device)
81
- transformed_image = sam1_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
82
 
83
- self.sam1_images.append(transformed_image)
84
- self.sam1_images_size.append(tuple(transformed_image.shape[-2:]))
 
53
  self.np_images_size.append(np_shape)
54
 
55
 
56
+ # # -- sam2 images --
57
+ # img_mean = torch.tensor((0.485, 0.456, 0.406))[:, None, None]
58
+ # img_std = torch.tensor((0.229, 0.224, 0.225))[:, None, None]
59
+ # self.sam2_images = []
60
+ # # TODO
61
+ # self.sam2_video_size = (self.pil_images_size[0][1], self.pil_images_size[0][0])
62
+ # self.sam2_input_size = 512
63
+ # for pil_image in self.pil_images:
64
+ # np_image = np.array(pil_image.resize((self.sam2_input_size, self.sam2_input_size)))
65
+ # np_image = np_image / 255.0
66
+ # sam2_image = torch.from_numpy(np_image).permute(2, 0, 1)
67
+ # self.sam2_images.append(sam2_image)
68
+ # self.sam2_images = torch.stack(self.sam2_images)
69
+ # self.sam2_images -= img_mean
70
+ # self.sam2_images /= img_std
71
+ # self.sam2_images.to(device)
72
 
73
+ # # -- sam1 images --
74
+ # self.sam1_images = []
75
+ # self.sam1_images_size = []
76
+ # self.sam1_input_size = 1024
77
+ # self.sam1_transform = ResizeLongestSide(self.sam1_input_size)
78
+ # for np_image in self.np_images:
79
+ # sam1_image = self.sam1_transform.apply_image(np_image)
80
+ # sam1_image_torch = torch.as_tensor(sam1_image, device=device)
81
+ # transformed_image = sam1_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
82
 
83
+ # self.sam1_images.append(transformed_image)
84
+ # self.sam1_images_size.append(tuple(transformed_image.shape[-2:]))