# Importing important libraries from fastapi import FastAPI, Query,HTTPException from fastapi.responses import JSONResponse, FileResponse, StreamingResponse from google.cloud import texttospeech from google.oauth2.service_account import Credentials from langchain.schema import HumanMessage from langchain_groq import ChatGroq import json from dotenv import load_dotenv import os # Importing utility functions for processing news articles from utils import ( extract_titles_and_summaries, perform_sentiment_analysis, extract_topics_with_hf, compare_articles ) load_dotenv() # Loading environment variables from .env file GROQ_API_KEY = os.getenv('GROQ_API_KEY') PRIVATE_KEY = os.getenv('PRIVATE_KEY').replace("\\n", "\n") CLIENT_EMAIL = os.getenv('CLIENT_EMAIL') app = FastAPI(title="Company Sentiment API", description="Get company news summaries with sentiment analysis") llm=ChatGroq(api_key=GROQ_API_KEY, model="llama-3.1-8b-instant") JSON_FILE_PATH = "final_summary.json" AUDIO_FILE_PATH = "hindi_summary.mp3" def get_tts_client(): # Function to create a Text-to-Speech client # Setting up Google Cloud credentials credentials = Credentials.from_service_account_info({ "type": "service_account", "private_key": PRIVATE_KEY, "client_email": CLIENT_EMAIL, "token_uri": "https://oauth2.googleapis.com/token" }) return texttospeech.TextToSpeechClient(credentials=credentials) # Creating main function to create final summarized report def generate_summary(company_name): news_articles = extract_titles_and_summaries(company_name) news_articles, sentiment_counts = perform_sentiment_analysis(news_articles) news_articles = extract_topics_with_hf(news_articles) final_summary = compare_articles(news_articles, sentiment_counts) hindi_text = "" if PRIVATE_KEY and CLIENT_EMAIL: hindi_prompt = f"Just Translate this text into Hindi: {final_summary['Final Sentiment Analysis']}" # Creating a prompt for Hindi translation hindi_response = llm.invoke([HumanMessage(content=hindi_prompt)]).content hindi_text = hindi_response.strip() if hindi_response else "Translation not available." if hindi_text: print(f"Generated Hindi Text: {hindi_text}") else: print("Hindi Text not generated") try: client = get_tts_client() # Getting the Text-to-Speech client input_text = texttospeech.SynthesisInput(text=hindi_text) # Creating TTS input from Hindi text voice = texttospeech.VoiceSelectionParams( language_code="hi-IN", name="hi-IN-Chirp3-HD-Kore" ) audio_config = texttospeech.AudioConfig(audio_encoding=texttospeech.AudioEncoding.MP3) # Configuring MP3 audio output response = client.synthesize_speech(input=input_text, voice=voice, audio_config=audio_config) # Synthesizing speech from text with open(AUDIO_FILE_PATH, "wb") as out: # Writing the audio content to a file out.write(response.audio_content) print(f"Audio content written to file: {AUDIO_FILE_PATH}") except Exception as e: print(f"Error generating audio: {e}") if not os.path.exists(AUDIO_FILE_PATH): print(f"Audio file could not be found at {AUDIO_FILE_PATH}.") final_summary["Audio"] = AUDIO_FILE_PATH with open(JSON_FILE_PATH,"w",encoding="utf-8") as f: json.dump(final_summary,f,ensure_ascii=False, indent=4) # Returning a structured summary response return { 'Company': final_summary["Company"], 'Articles': [ { 'Title': article.get('Title', 'No Title'), 'Summary': article.get('Summary', 'No Summary'), 'Sentiment': article.get('Sentiment', 'Unknown'), 'Score': article.get('Score', 0.0), 'Topics': article.get('Topics', []) } for article in final_summary["Articles"] ], 'Comparative Sentiment Score': { # Structuring sentiment analysis comparison 'Sentiment Distribution': sentiment_counts, 'Coverage Differences': final_summary["Comparative Sentiment Score"].get("Coverage Differences", []), 'Topic Overlap': { 'Common Topics': final_summary["Comparative Sentiment Score"].get("Topic Overlap", {}).get("Common Topics", []), 'Unique Topics': final_summary["Comparative Sentiment Score"].get("Topic Overlap", {}).get("Unique Topics", {}) } }, 'Final Sentiment Analysis': final_summary["Final Sentiment Analysis"], 'Audio': AUDIO_FILE_PATH } @app.get("/") # Defining a GET route for the home endpoint def home(): return {"message": "Welcome to the Company Sentiment API"} @app.post("/generateSummary") # Defining a POST route to generate a summary def get_summary(company_name: str = Query(..., description="Enter company name")): structured_summary = generate_summary(company_name) return structured_summary @app.get("/downloadJson") # Defining a GET route to download the JSON summary def download_json(): return FileResponse(JSON_FILE_PATH, media_type="application/json", filename="final_summary.json") @app.get("/downloadHindiAudio") # Defining a GET route to download Hindi audio def download_audio(): return FileResponse(AUDIO_FILE_PATH, media_type="audio/mp3", filename="hindi_summary.mp3") if __name__ == "__main__": # Main execution block for running the app import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)