Spaces:
Sleeping
Sleeping
Kazuto Nakashima
commited on
Commit
·
5acffd4
1
Parent(s):
af80c65
init
Browse files- README.md +4 -4
- app.py +225 -0
- pre-requirements.txt +3 -0
- requirements.txt +14 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.22.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
+
title: R2Flow
|
3 |
+
emoji: 🚗
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.22.0
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import einops
|
4 |
+
import gradio as gr
|
5 |
+
import matplotlib.cm as cm
|
6 |
+
import numpy as np
|
7 |
+
import plotly.graph_objects as go
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torchdiffeq
|
11 |
+
|
12 |
+
DESCRIPTION = """
|
13 |
+
<div class="head">
|
14 |
+
<div class="title">Fast LiDAR Data Generation with Rectified Flows</div>
|
15 |
+
<div class="conference">ICRA 2025</div>
|
16 |
+
<div class="authors">
|
17 |
+
<a href="https://kazuto1011.github.io/" target="_blank" rel="noopener"> Kazuto Nakashima</a><sup>1</sup>
|
18 |
+
|
19 |
+
<a> Xiaowen Liu</a><sup>1</sup>
|
20 |
+
|
21 |
+
<a> Tomoya Miyawaki</a><sup>1</sup>
|
22 |
+
|
23 |
+
<a> Yumi Iwashita</a><sup>2</sup>
|
24 |
+
|
25 |
+
<a> Ryo Kurazume</a><sup>1</sup>
|
26 |
+
</div>
|
27 |
+
<div class="affiliations">
|
28 |
+
<sup>1</sup>Kyushu University
|
29 |
+
|
30 |
+
<sup>2</sup>NASA Jet Propulsion Laboratory
|
31 |
+
</div>
|
32 |
+
<div class="materials">
|
33 |
+
<a href="https://kazuto1011.github.io/r2flow">Project</a> |
|
34 |
+
<a href="https://arxiv.org/abs/2412.02241">Paper</a> |
|
35 |
+
<a href="https://github.com/kazuto1011/r2flow">Code</a>
|
36 |
+
</div>
|
37 |
+
<br>
|
38 |
+
<div class="description">
|
39 |
+
This is a demo of our paper "Fast LiDAR Data Generation with Rectified Flows" accepted to ICRA 2025.<br>
|
40 |
+
We propose <strong>R2Flow</strong>, a rectified flow-based LiDAR generative model which generate the LiDAR range/reflectance images.<br>
|
41 |
+
</div>
|
42 |
+
<br>
|
43 |
+
</div>
|
44 |
+
"""
|
45 |
+
|
46 |
+
if torch.cuda.is_available():
|
47 |
+
device = "cuda"
|
48 |
+
elif torch.backends.mps.is_available():
|
49 |
+
device = "mps"
|
50 |
+
else:
|
51 |
+
device = "cpu"
|
52 |
+
|
53 |
+
torch.set_grad_enabled(False)
|
54 |
+
torch.backends.cudnn.benchmark = True
|
55 |
+
device = torch.device(device)
|
56 |
+
|
57 |
+
|
58 |
+
model_dict = {
|
59 |
+
"1-RF": "r2flow-kitti360-1rf",
|
60 |
+
"2-RF": "r2flow-kitti360-2rf",
|
61 |
+
"2-RF + 4-TD": "r2flow-kitti360-2rf-4td",
|
62 |
+
"2-RF + 2-TD": "r2flow-kitti360-2rf-2td",
|
63 |
+
"2-RF + 1-TD": "r2flow-kitti360-2rf-1td",
|
64 |
+
}
|
65 |
+
|
66 |
+
|
67 |
+
torch_hub_kwargs = dict(
|
68 |
+
repo_or_dir="kazuto1011/r2flow",
|
69 |
+
model="pretrained_r2flow",
|
70 |
+
device=device,
|
71 |
+
show_info=False,
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
def colorize(tensor: torch.Tensor, cmap_fn=cm.turbo):
|
76 |
+
colors = cmap_fn(np.linspace(0, 1, 256))[:, :3]
|
77 |
+
colors = torch.from_numpy(colors).to(tensor)
|
78 |
+
tensor = tensor.squeeze(1) if tensor.ndim == 4 else tensor
|
79 |
+
ids = (tensor * 256).clamp(0, 255).long()
|
80 |
+
tensor = F.embedding(ids, colors).permute(0, 3, 1, 2)
|
81 |
+
tensor = tensor.mul(255).clamp(0, 255).byte()
|
82 |
+
return tensor
|
83 |
+
|
84 |
+
|
85 |
+
def model_verbose(model, nfe, progress):
|
86 |
+
handler = progress.tqdm(range(nfe), desc="Generating...")
|
87 |
+
|
88 |
+
def _model(t, x):
|
89 |
+
handler.update(1)
|
90 |
+
return model(t, x)
|
91 |
+
|
92 |
+
return _model
|
93 |
+
|
94 |
+
|
95 |
+
def generate(nfe: int, solver: str, phase: str, progress=gr.Progress()):
|
96 |
+
model, lidar_utils, _ = torch.hub.load(config=model_dict[phase], **torch_hub_kwargs)
|
97 |
+
|
98 |
+
with torch.inference_mode():
|
99 |
+
x1 = torchdiffeq.odeint(
|
100 |
+
func=model_verbose(model, int(nfe), progress),
|
101 |
+
y0=torch.randn(1, model.in_channels, *model.resolution, device=device),
|
102 |
+
t=torch.linspace(0, 1, int(nfe) + 1, device=device),
|
103 |
+
method=solver,
|
104 |
+
)[-1]
|
105 |
+
|
106 |
+
depth = lidar_utils.restore_metric_depth(x1[:, [0]])
|
107 |
+
rflct = lidar_utils.denormalize(x1[:, [1]])
|
108 |
+
point = lidar_utils.convert_metric_depth(depth, format="cartesian")
|
109 |
+
|
110 |
+
z_min, z_max = -2, 0.5
|
111 |
+
z = (point[:, [2]] - z_min) / (z_max - z_min)
|
112 |
+
color = colorize(z.clamp(0, 1), cm.viridis) / 255
|
113 |
+
point = einops.rearrange(point, "1 c h w -> (h w) c").cpu().numpy()
|
114 |
+
color = einops.rearrange(color, "1 c h w -> (h w) c").cpu().numpy()
|
115 |
+
fig = go.Figure(
|
116 |
+
data=[
|
117 |
+
go.Scatter3d(
|
118 |
+
x=-point[..., 0],
|
119 |
+
y=-point[..., 1],
|
120 |
+
z=point[..., 2],
|
121 |
+
mode="markers",
|
122 |
+
marker=dict(size=1, color=color),
|
123 |
+
)
|
124 |
+
],
|
125 |
+
layout=dict(
|
126 |
+
scene=dict(
|
127 |
+
xaxis=dict(showticklabels=False, visible=False),
|
128 |
+
yaxis=dict(showticklabels=False, visible=False),
|
129 |
+
zaxis=dict(showticklabels=False, visible=False),
|
130 |
+
aspectmode="data",
|
131 |
+
),
|
132 |
+
margin=dict(l=0, r=0, b=0, t=0),
|
133 |
+
paper_bgcolor="white",
|
134 |
+
plot_bgcolor="white",
|
135 |
+
),
|
136 |
+
)
|
137 |
+
depth = depth / lidar_utils.max_depth
|
138 |
+
depth = colorize(depth, cm.turbo)[0].permute(1, 2, 0).cpu().numpy()
|
139 |
+
rflct = colorize(rflct, cm.turbo)[0].permute(1, 2, 0).cpu().numpy()
|
140 |
+
|
141 |
+
model.cpu()
|
142 |
+
lidar_utils.cpu()
|
143 |
+
return depth, rflct, fig
|
144 |
+
|
145 |
+
|
146 |
+
def setup_dropdown(value):
|
147 |
+
if "TD" in value:
|
148 |
+
solver_choices = ["euler"]
|
149 |
+
solver_default = "euler"
|
150 |
+
num_step = re.findall(r"(\d+)-TD", value)[0]
|
151 |
+
nfe_choices = [num_step]
|
152 |
+
nfe_default = num_step
|
153 |
+
else:
|
154 |
+
solver_choices = ["euler", "dopri5"]
|
155 |
+
solver_default = "euler"
|
156 |
+
nfe_choices = [2**i for i in range(0, 9)]
|
157 |
+
nfe_default = 256
|
158 |
+
dropdown_solver = gr.Dropdown(
|
159 |
+
choices=solver_choices,
|
160 |
+
value=solver_default,
|
161 |
+
label="ODE solver",
|
162 |
+
info="Fixed if TD enabled",
|
163 |
+
)
|
164 |
+
dropdown_nfe = gr.Dropdown(
|
165 |
+
choices=nfe_choices,
|
166 |
+
value=nfe_default,
|
167 |
+
label="Number of sampling steps",
|
168 |
+
info="Fixed if TD enabled",
|
169 |
+
)
|
170 |
+
return dropdown_solver, dropdown_nfe
|
171 |
+
|
172 |
+
|
173 |
+
with gr.Blocks(
|
174 |
+
css="""
|
175 |
+
.head {
|
176 |
+
text-align: center;
|
177 |
+
display: block;
|
178 |
+
font-size: var(--text-xl);
|
179 |
+
}
|
180 |
+
|
181 |
+
.title {
|
182 |
+
font-size: var(--text-xxl);
|
183 |
+
font-weight: bold;
|
184 |
+
margin-top: 2rem;
|
185 |
+
}
|
186 |
+
|
187 |
+
.description {
|
188 |
+
font-size: var(--text-lg);
|
189 |
+
}
|
190 |
+
""",
|
191 |
+
theme=gr.themes.Ocean(),
|
192 |
+
) as demo:
|
193 |
+
gr.HTML(DESCRIPTION)
|
194 |
+
|
195 |
+
with gr.Row(variant="panel"):
|
196 |
+
with gr.Column():
|
197 |
+
gr.Textbox(device, label="Running device")
|
198 |
+
dropdown_model = gr.Dropdown(
|
199 |
+
choices=list(model_dict.keys()),
|
200 |
+
value="2-RF + 4-TD",
|
201 |
+
label="Model checkpoint",
|
202 |
+
info="RF: rectified flow, TD: timestep distillation",
|
203 |
+
)
|
204 |
+
dropdown_solver, dropdown_nfe = setup_dropdown(dropdown_model.value)
|
205 |
+
dropdown_model.change(
|
206 |
+
setup_dropdown,
|
207 |
+
inputs=[dropdown_model],
|
208 |
+
outputs=[dropdown_solver, dropdown_nfe],
|
209 |
+
)
|
210 |
+
btn = gr.Button(value="Generate", variant="primary")
|
211 |
+
|
212 |
+
with gr.Column():
|
213 |
+
range_view = gr.Image(type="numpy", label="Range image")
|
214 |
+
rflct_view = gr.Image(type="numpy", label="Reflectance image")
|
215 |
+
point_view = gr.Plot(label="Point cloud")
|
216 |
+
|
217 |
+
btn.click(
|
218 |
+
generate,
|
219 |
+
inputs=[dropdown_nfe, dropdown_solver, dropdown_model],
|
220 |
+
outputs=[range_view, rflct_view, point_view],
|
221 |
+
)
|
222 |
+
|
223 |
+
|
224 |
+
demo.queue()
|
225 |
+
demo.launch()
|
pre-requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
--index-url https://download.pytorch.org/whl/cpu
|
2 |
+
torch==2.1.2
|
3 |
+
torchvision==0.16.2
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
einops==0.6.1
|
2 |
+
gradio==5.22.0
|
3 |
+
kornia==0.7.0
|
4 |
+
matplotlib==3.7.1
|
5 |
+
pydantic==2.6.3
|
6 |
+
rich==13.5.1
|
7 |
+
simple-parsing==0.1.5
|
8 |
+
torchcfm==1.0.5
|
9 |
+
torchdiffeq==0.2.4
|
10 |
+
tqdm==4.66.1
|
11 |
+
plotly==6.0.1
|
12 |
+
numpy==1.26.4
|
13 |
+
--find-links https://shi-labs.com/natten/wheels
|
14 |
+
natten==0.17.5+torch260cpu
|