Update agent.py
Browse files
agent.py
CHANGED
@@ -4,8 +4,8 @@ from dotenv import load_dotenv
|
|
4 |
from langgraph.graph import START, StateGraph, MessagesState
|
5 |
from langgraph.prebuilt import tools_condition
|
6 |
from langgraph.prebuilt import ToolNode
|
7 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
-
from langchain_groq import ChatGroq
|
9 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
10 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
from langchain_community.document_loaders import WikipediaLoader
|
@@ -152,16 +152,16 @@ tools = [
|
|
152 |
]
|
153 |
|
154 |
# Build graph function
|
155 |
-
def build_graph(provider: str = "
|
156 |
"""Build the graph"""
|
157 |
# Load environment variables from .env file
|
158 |
-
if provider == "google":
|
159 |
# Google Gemini
|
160 |
-
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
161 |
-
elif provider == "groq":
|
162 |
# Groq https://console.groq.com/docs/models
|
163 |
-
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
164 |
-
|
165 |
# TODO: Add huggingface endpoint
|
166 |
llm = ChatHuggingFace(
|
167 |
llm=HuggingFaceEndpoint(
|
@@ -206,7 +206,7 @@ def build_graph(provider: str = "groq"):
|
|
206 |
if __name__ == "__main__":
|
207 |
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
208 |
# Build the graph
|
209 |
-
graph = build_graph(provider="
|
210 |
# Run the graph
|
211 |
messages = [HumanMessage(content=question)]
|
212 |
messages = graph.invoke({"messages": messages})
|
|
|
4 |
from langgraph.graph import START, StateGraph, MessagesState
|
5 |
from langgraph.prebuilt import tools_condition
|
6 |
from langgraph.prebuilt import ToolNode
|
7 |
+
# from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
# from langchain_groq import ChatGroq
|
9 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
10 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
from langchain_community.document_loaders import WikipediaLoader
|
|
|
152 |
]
|
153 |
|
154 |
# Build graph function
|
155 |
+
def build_graph(provider: str = "huggingface"):
|
156 |
"""Build the graph"""
|
157 |
# Load environment variables from .env file
|
158 |
+
# if provider == "google":
|
159 |
# Google Gemini
|
160 |
+
# llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
161 |
+
# elif provider == "groq":
|
162 |
# Groq https://console.groq.com/docs/models
|
163 |
+
# llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
164 |
+
if provider == "huggingface":
|
165 |
# TODO: Add huggingface endpoint
|
166 |
llm = ChatHuggingFace(
|
167 |
llm=HuggingFaceEndpoint(
|
|
|
206 |
if __name__ == "__main__":
|
207 |
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
208 |
# Build the graph
|
209 |
+
graph = build_graph(provider="huggingface")
|
210 |
# Run the graph
|
211 |
messages = [HumanMessage(content=question)]
|
212 |
messages = graph.invoke({"messages": messages})
|